Twisting and satellite operations on P-fibered braids

IF 0.7 4区 数学 Q2 MATHEMATICS
Benjamin Bode
{"title":"Twisting and satellite operations on P-fibered braids","authors":"Benjamin Bode","doi":"10.4310/cag.2023.v31.n8.a5","DOIUrl":null,"url":null,"abstract":"A geometric braid $B$ can be interpreted as a loop in the space of monic complex polynomials with distinct roots. This loop defines a function $g : \\mathbb{C} \\times S^1 \\to C$ that vanishes on $B$. We define the set of P‑<i>fibered </i>braids as those braids that can be represented by loops of polynomials such that the corresponding function g induces a fibration arg $g : (\\mathbb{C} \\times S^1) \\setminus B \\to S^1$. We show that a certain satellite operation produces new P‑fibered braids from known ones. We also use P‑fibered braids to prove that any braid $B$ with $n$ strands, $k_{-}$ negative and $k_{+}$ positive crossings can be turned into a braid whose closure is fibered by adding at least $\\frac{k_{-} +1}{n}$ negative or $\\frac{k_{+} +1}{n}$ positive full twists to it. Using earlier constructions of P‑fibered braids we prove that every link is a sublink of a real algebraic link, i.e., a link of an isolated singularity of a polynomial map $\\mathbb{R}^4 \\to \\mathbb{R}^2$.","PeriodicalId":50662,"journal":{"name":"Communications in Analysis and Geometry","volume":"9 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cag.2023.v31.n8.a5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A geometric braid $B$ can be interpreted as a loop in the space of monic complex polynomials with distinct roots. This loop defines a function $g : \mathbb{C} \times S^1 \to C$ that vanishes on $B$. We define the set of P‑fibered braids as those braids that can be represented by loops of polynomials such that the corresponding function g induces a fibration arg $g : (\mathbb{C} \times S^1) \setminus B \to S^1$. We show that a certain satellite operation produces new P‑fibered braids from known ones. We also use P‑fibered braids to prove that any braid $B$ with $n$ strands, $k_{-}$ negative and $k_{+}$ positive crossings can be turned into a braid whose closure is fibered by adding at least $\frac{k_{-} +1}{n}$ negative or $\frac{k_{+} +1}{n}$ positive full twists to it. Using earlier constructions of P‑fibered braids we prove that every link is a sublink of a real algebraic link, i.e., a link of an isolated singularity of a polynomial map $\mathbb{R}^4 \to \mathbb{R}^2$.
P 纤维编织物的扭转和卫星操作
几何辫状结构 $B$ 可以解释为具有不同根的单复多项式空间中的一个环。这个循环定义了一个函数 $g :\到\times S^1 \to C$ 在 $B$ 上消失。我们将 P 纤维辫的集合定义为那些可以用多项式的环来表示的辫,使得相应的函数 g 可以诱导一个纤度 arg $g : (\mathbb{C} \times S^1) \setminus B \to S^1$.我们证明了某种卫星操作可以从已知的 P 纤维辫产生新的 P 纤维辫。我们还利用 P 纤维辫证明,任何具有 $n$ 股、$k_{-}$ 负交叉和 $k_{+}$ 正交叉的 $B$ 辫子,都可以通过添加至少 $\frac{k_{-}+{n}$ 负交叉或 $k_{+}$ 正交叉,变成闭合是纤维的辫子。+1}{n}$ 负捻或 $\frac{k_{+} +1}{n}$ 正捻。利用早先的 P 纤维辫的构造,我们证明了每个链接都是实代数链接的子链接,即多项式映射 $\mathbb{R}^4 \to \mathbb{R}^2$的孤立奇点的链接。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
4
审稿时长
>12 weeks
期刊介绍: Publishes high-quality papers on subjects related to classical analysis, partial differential equations, algebraic geometry, differential geometry, and topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信