{"title":"Twisting and satellite operations on P-fibered braids","authors":"Benjamin Bode","doi":"10.4310/cag.2023.v31.n8.a5","DOIUrl":null,"url":null,"abstract":"A geometric braid $B$ can be interpreted as a loop in the space of monic complex polynomials with distinct roots. This loop defines a function $g : \\mathbb{C} \\times S^1 \\to C$ that vanishes on $B$. We define the set of P‑<i>fibered </i>braids as those braids that can be represented by loops of polynomials such that the corresponding function g induces a fibration arg $g : (\\mathbb{C} \\times S^1) \\setminus B \\to S^1$. We show that a certain satellite operation produces new P‑fibered braids from known ones. We also use P‑fibered braids to prove that any braid $B$ with $n$ strands, $k_{-}$ negative and $k_{+}$ positive crossings can be turned into a braid whose closure is fibered by adding at least $\\frac{k_{-} +1}{n}$ negative or $\\frac{k_{+} +1}{n}$ positive full twists to it. Using earlier constructions of P‑fibered braids we prove that every link is a sublink of a real algebraic link, i.e., a link of an isolated singularity of a polynomial map $\\mathbb{R}^4 \\to \\mathbb{R}^2$.","PeriodicalId":50662,"journal":{"name":"Communications in Analysis and Geometry","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cag.2023.v31.n8.a5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
A geometric braid $B$ can be interpreted as a loop in the space of monic complex polynomials with distinct roots. This loop defines a function $g : \mathbb{C} \times S^1 \to C$ that vanishes on $B$. We define the set of P‑fibered braids as those braids that can be represented by loops of polynomials such that the corresponding function g induces a fibration arg $g : (\mathbb{C} \times S^1) \setminus B \to S^1$. We show that a certain satellite operation produces new P‑fibered braids from known ones. We also use P‑fibered braids to prove that any braid $B$ with $n$ strands, $k_{-}$ negative and $k_{+}$ positive crossings can be turned into a braid whose closure is fibered by adding at least $\frac{k_{-} +1}{n}$ negative or $\frac{k_{+} +1}{n}$ positive full twists to it. Using earlier constructions of P‑fibered braids we prove that every link is a sublink of a real algebraic link, i.e., a link of an isolated singularity of a polynomial map $\mathbb{R}^4 \to \mathbb{R}^2$.
期刊介绍:
Publishes high-quality papers on subjects related to classical analysis, partial differential equations, algebraic geometry, differential geometry, and topology.