Dependent censoring with simultaneous death times based on the Generalized Marshall–Olkin model

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY
Mikael Escobar-Bach, Salima Helali
{"title":"Dependent censoring with simultaneous death times based on the Generalized Marshall–Olkin model","authors":"Mikael Escobar-Bach,&nbsp;Salima Helali","doi":"10.1016/j.jmva.2024.105347","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we consider the problem of dependent censoring models with a positive probability that the times of failure are equal. In this context, we propose to consider the Marshall–Olkin type model and studied some properties of the associated survival copula in its application to censored data. We also introduce estimators for the marginal distributions and the joint survival probabilities under different schemes and show their asymptotic normality under appropriate conditions. Finally, we evaluate the finite-sample performance of our approach relying on a small simulation study with synthetic data real data applications.</p></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0047259X2400054X/pdfft?md5=b9e7bd9d7773367d73bd57f13743392a&pid=1-s2.0-S0047259X2400054X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X2400054X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider the problem of dependent censoring models with a positive probability that the times of failure are equal. In this context, we propose to consider the Marshall–Olkin type model and studied some properties of the associated survival copula in its application to censored data. We also introduce estimators for the marginal distributions and the joint survival probabilities under different schemes and show their asymptotic normality under appropriate conditions. Finally, we evaluate the finite-sample performance of our approach relying on a small simulation study with synthetic data real data applications.

基于广义马歇尔-奥尔金模型的同时死亡时间依赖性普查
在本文中,我们考虑了失败时间相等的正概率依存剔除模型问题。在这种情况下,我们建议考虑马歇尔-奥尔金类型的模型,并研究了相关生存协方差在剔除数据应用中的一些特性。我们还介绍了不同方案下边际分布和联合生存概率的估计值,并说明了它们在适当条件下的渐近正态性。最后,我们通过对合成数据和真实数据应用的小型模拟研究,评估了我们方法的有限样本性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Multivariate Analysis
Journal of Multivariate Analysis 数学-统计学与概率论
CiteScore
2.40
自引率
25.00%
发文量
108
审稿时长
74 days
期刊介绍: Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data. The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of Copula modeling Functional data analysis Graphical modeling High-dimensional data analysis Image analysis Multivariate extreme-value theory Sparse modeling Spatial statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信