Enhancing Trading Strategies: A Multi-indicator Analysis for Profitable Algorithmic Trading

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Narongsak Sukma, Chakkrit Snae Namahoot
{"title":"Enhancing Trading Strategies: A Multi-indicator Analysis for Profitable Algorithmic Trading","authors":"Narongsak Sukma, Chakkrit Snae Namahoot","doi":"10.1007/s10614-024-10669-3","DOIUrl":null,"url":null,"abstract":"<p>Algorithmic trading has become increasingly prevalent in financial markets, and traders and investors seeking to leverage computational techniques and data analysis to gain a competitive edge. This paper presents a comprehensive analysis of algorithmic trading strategies, focusing on the efficacy of technical indicators in predicting market trends and generating profitable trading signals. The research framework outlines a systematic process for investigating and evaluating stock market investment strategies, beginning with a clear research objective and a comprehensive review of the literature. Data collected from various stock exchanges, including the S&amp;P 500, undergo rigorous preprocessing, cleaning, and transformation. The subsequent stages involve generating investment signals, calculating relevant indicators such as RSI, EMAs, and MACD, and conducting backtesting to compare the strategy's historical performance to benchmarks. The key findings reveal notable returns generated by the indicators analyzed, though falling short of benchmark performance, highlighting the need for further refinement. The study underscores the importance of a multi-indicator approach in enhancing the interpretability and predictive accuracy of algorithmic trading models. This research contributes to understanding of algorithmic trading strategies and provides valuable information for traders and investors looking to optimize their investment decisions in financial markets.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1007/s10614-024-10669-3","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Algorithmic trading has become increasingly prevalent in financial markets, and traders and investors seeking to leverage computational techniques and data analysis to gain a competitive edge. This paper presents a comprehensive analysis of algorithmic trading strategies, focusing on the efficacy of technical indicators in predicting market trends and generating profitable trading signals. The research framework outlines a systematic process for investigating and evaluating stock market investment strategies, beginning with a clear research objective and a comprehensive review of the literature. Data collected from various stock exchanges, including the S&P 500, undergo rigorous preprocessing, cleaning, and transformation. The subsequent stages involve generating investment signals, calculating relevant indicators such as RSI, EMAs, and MACD, and conducting backtesting to compare the strategy's historical performance to benchmarks. The key findings reveal notable returns generated by the indicators analyzed, though falling short of benchmark performance, highlighting the need for further refinement. The study underscores the importance of a multi-indicator approach in enhancing the interpretability and predictive accuracy of algorithmic trading models. This research contributes to understanding of algorithmic trading strategies and provides valuable information for traders and investors looking to optimize their investment decisions in financial markets.

Abstract Image

增强交易策略:盈利算法交易的多指标分析
算法交易在金融市场日益盛行,交易者和投资者都在寻求利用计算技术和数据分析来获得竞争优势。本文对算法交易策略进行了全面分析,重点关注技术指标在预测市场趋势和生成盈利交易信号方面的功效。研究框架概述了调查和评估股市投资策略的系统过程,首先是明确研究目标和全面回顾文献。从各种证券交易所(包括 S&P 500 指数)收集的数据都经过了严格的预处理、清理和转换。随后的阶段包括生成投资信号,计算 RSI、EMA 和 MACD 等相关指标,以及进行回溯测试,将策略的历史表现与基准进行比较。主要研究结果表明,所分析的指标产生了可观的回报,但与基准业绩相比仍有差距,这凸显了进一步完善的必要性。这项研究强调了多指标方法在提高算法交易模型的可解释性和预测准确性方面的重要性。这项研究有助于加深对算法交易策略的理解,并为希望优化金融市场投资决策的交易者和投资者提供有价值的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信