Le Gao, Lijun Xie, Yanmin Xiao, Xinge Cheng, Ruosi Pu, Ziheng Zhang, Yu Liu, Shaopei Gao, Zilong Zhang, Haoran Qu, Haijian Zhi, Kai Li
{"title":"CRISPR/CasRx-mediated resistance to Soybean mosaic virus in soybean","authors":"Le Gao, Lijun Xie, Yanmin Xiao, Xinge Cheng, Ruosi Pu, Ziheng Zhang, Yu Liu, Shaopei Gao, Zilong Zhang, Haoran Qu, Haijian Zhi, Kai Li","doi":"10.1016/j.cj.2024.07.007","DOIUrl":null,"url":null,"abstract":"(SMV), an RNA virus, is the most common and destructive pathogenic virus in soybean fields. The newly developed CRISPR/Cas immune system has provided a novel strategy for improving plant resistance to viruses; hence, this study aimed to engineer SMV resistance in soybean using this system. Specifically, multiple sgRNAs were designed to target positive- and/or negative-sense strands of the SMV gene. Subsequently, the corresponding CRISPR/CasRx vectors were constructed and transformed into soybeans. After inoculation with SMV, 39.02%, 35.77%, and 18.70% of T plants were confirmed to be highly resistant (HR), resistant (R), and mildly resistant (MR) to SMV, respectively, whereas only 6.50% were identified as susceptible (S). Additionally, qRT-PCR and DAS-ELISA showed that, both at 15 and 30 d post-inoculation (dpi), SMV accumulation significantly decreased or was even undetectable in HR and R plants, followed by MR and S plants. Additionally, the expression level of the gene varied in almost all T plants with different resistance level, both at 15 and 30 dpi. Furthermore, when SMV resistance was evaluated in the T generation, the results were similar to those recorded for the T generation. These findings provide new insights into the application of the CRISPR/CasRx system for soybean improvement and offer a promising alternative strategy for breeding for resistance to biotic stress that will contribute to the development of SMV-immune soybean germplasm to accelerate progress towards greater soybean crop productivity.","PeriodicalId":501058,"journal":{"name":"The Crop Journal","volume":"60 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Crop Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cj.2024.07.007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
(SMV), an RNA virus, is the most common and destructive pathogenic virus in soybean fields. The newly developed CRISPR/Cas immune system has provided a novel strategy for improving plant resistance to viruses; hence, this study aimed to engineer SMV resistance in soybean using this system. Specifically, multiple sgRNAs were designed to target positive- and/or negative-sense strands of the SMV gene. Subsequently, the corresponding CRISPR/CasRx vectors were constructed and transformed into soybeans. After inoculation with SMV, 39.02%, 35.77%, and 18.70% of T plants were confirmed to be highly resistant (HR), resistant (R), and mildly resistant (MR) to SMV, respectively, whereas only 6.50% were identified as susceptible (S). Additionally, qRT-PCR and DAS-ELISA showed that, both at 15 and 30 d post-inoculation (dpi), SMV accumulation significantly decreased or was even undetectable in HR and R plants, followed by MR and S plants. Additionally, the expression level of the gene varied in almost all T plants with different resistance level, both at 15 and 30 dpi. Furthermore, when SMV resistance was evaluated in the T generation, the results were similar to those recorded for the T generation. These findings provide new insights into the application of the CRISPR/CasRx system for soybean improvement and offer a promising alternative strategy for breeding for resistance to biotic stress that will contribute to the development of SMV-immune soybean germplasm to accelerate progress towards greater soybean crop productivity.