Characterizations of $\mathbb{N}$-compactness and realcompactness via ultrafilters in the absence of the axiom of choice

AliReza Olfati, Eliza Wajch
{"title":"Characterizations of $\\mathbb{N}$-compactness and realcompactness via ultrafilters in the absence of the axiom of choice","authors":"AliReza Olfati, Eliza Wajch","doi":"arxiv-2408.01461","DOIUrl":null,"url":null,"abstract":"This article concerns the Herrlich-Chew theorem stating that a Hausdorff\nzero-dimensional space is $\\mathbb{N}$-compact if and only if every clopen\nultrafilter with the countable intersection property in this space is fixed. It\nalso concerns Hewitt's theorem stating that a Tychonoff space is realcompact if\nand only if every $z$-ultrafilter with the countable intersection property in\nthis space is fixed. The axiom of choice was involved in the original proofs of\nthese theorems. The aim of this article is to show that the Herrlich-Chew\ntheorem is valid in $\\mathbf{ZF}$, but it is an open problem if Hewitt's\ntheorem can be false in a model of $\\mathbf{ZF}$. It is proved that Hewitt's\ntheorem is true in every model of $\\mathbf{ZF}$ in which the countable axiom of\nmultiple choice is satisfied. A modification of Hewitt's theorem is given and\nproved true in $\\mathbf{ZF}$. Several applications of the results obtained are\nshown.","PeriodicalId":501314,"journal":{"name":"arXiv - MATH - General Topology","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.01461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article concerns the Herrlich-Chew theorem stating that a Hausdorff zero-dimensional space is $\mathbb{N}$-compact if and only if every clopen ultrafilter with the countable intersection property in this space is fixed. It also concerns Hewitt's theorem stating that a Tychonoff space is realcompact if and only if every $z$-ultrafilter with the countable intersection property in this space is fixed. The axiom of choice was involved in the original proofs of these theorems. The aim of this article is to show that the Herrlich-Chew theorem is valid in $\mathbf{ZF}$, but it is an open problem if Hewitt's theorem can be false in a model of $\mathbf{ZF}$. It is proved that Hewitt's theorem is true in every model of $\mathbf{ZF}$ in which the countable axiom of multiple choice is satisfied. A modification of Hewitt's theorem is given and proved true in $\mathbf{ZF}$. Several applications of the results obtained are shown.
在没有选择公理的情况下通过超滤波器对$\mathbb{N}$紧凑性和实紧凑性的描述
这篇文章涉及赫里希-周(Herrlich-Chew)定理,该定理指出,当且仅当该空间中具有可数交集性质的每一个clopenultrafilter都是固定的时候,一个豪斯多夫零维空间才是$\mathbb{N}$-紧凑的。伊塔索涉及休伊特定理,该定理指出,当且仅当该空间中具有可数交集性质的每一个 $z$-ultrafilter 都是固定的时候,一个 Tychonoff 空间才是实紧凑的。这些定理的原始证明都涉及到选择公理。本文的目的是证明赫尔利希-切定理在 $\mathbf{ZF}$ 中是有效的,但休伊特定理在 $\mathbf{ZF}$ 的模型中是否可能是假的,这还是一个悬而未决的问题。本文证明,在满足多重选择可数公理的每一个 $\mathbf{ZF}$ 模型中,休伊特定理都是真的。给出了休伊特定理的一个修正,并证明其在 $\mathbf{ZF}$ 中为真。并展示了所获结果的若干应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信