On uniformly continuous surjections between $C_p$-spaces over metrizable spaces

A. Eysen, A. Leiderman, V. Valov
{"title":"On uniformly continuous surjections between $C_p$-spaces over metrizable spaces","authors":"A. Eysen, A. Leiderman, V. Valov","doi":"arxiv-2408.01870","DOIUrl":null,"url":null,"abstract":"Let $X$ and $Y$ be metrizable spaces and suppose that there exists a\nuniformly continuous surjection $T: C_{p}(X) \\to C_{p}(Y)$ (resp., $T:\nC_{p}^*(X) \\to C_{p}^*(Y)$), where $C_{p}(X)$ (resp., $C_{p}^*(X)$) denotes the\nspace of all real-valued continuous (resp., continuous and bounded) functions\non $X$ endowed with the pointwise convergence topology. We show that if additionally $T$ is an inversely bounded mapping and $X$ has\nsome dimensional-like property $\\mathcal P$, then so does $Y$. For example,\nthis is true if $\\mathcal P$ is one of the following properties:\nzero-dimensionality, countable-dimensionality or strong\ncountable-dimensionality. Also, we consider other properties $\\mathcal P$: of being a scattered, or a\nstrongly $\\sigma$-scattered space, or being a $\\Delta_1$-space (see [17]). Our\nresults strengthen and extend several results from [6], [13], [17].","PeriodicalId":501314,"journal":{"name":"arXiv - MATH - General Topology","volume":"65 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.01870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $X$ and $Y$ be metrizable spaces and suppose that there exists a uniformly continuous surjection $T: C_{p}(X) \to C_{p}(Y)$ (resp., $T: C_{p}^*(X) \to C_{p}^*(Y)$), where $C_{p}(X)$ (resp., $C_{p}^*(X)$) denotes the space of all real-valued continuous (resp., continuous and bounded) functions on $X$ endowed with the pointwise convergence topology. We show that if additionally $T$ is an inversely bounded mapping and $X$ has some dimensional-like property $\mathcal P$, then so does $Y$. For example, this is true if $\mathcal P$ is one of the following properties: zero-dimensionality, countable-dimensionality or strong countable-dimensionality. Also, we consider other properties $\mathcal P$: of being a scattered, or a strongly $\sigma$-scattered space, or being a $\Delta_1$-space (see [17]). Our results strengthen and extend several results from [6], [13], [17].
论可元空间上 $C_p$ 空间之间的均匀连续投射
让 $X$ 和 $Y$ 是可元空间,并假设存在一个均匀连续的投射 $T: C_{p}(X) \to C_{p}(Y)$ (或者,$T:C_{p}^*(X) \to C_{p}^*(Y)$),其中 $C_{p}(X)$ (或者、$C_{p}^*(X)$)表示在 $X$ 上所有实值连续(或者说,连续且有界)函数的空间,并赋有点式收敛拓扑。我们证明,如果另外$T$是一个反向有界映射,并且$X$具有某种类似维度的性质$\mathcal P$,那么$Y$也是如此。例如,如果 $\mathcal P$ 是以下性质之一:零维、可数维或强可数维,那么这就是真的。此外,我们还考虑了 $\mathcal P$ 的其他性质:散射空间或强 $\sigma$ 散射空间,或 $\Delta_1$ 空间(见 [17])。我们的结果加强并扩展了[6]、[13]、[17]中的一些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信