Reconstruction of energy and arrival directions of UHECRs registered by fluorescence telescopes with a neural network

Mikhail Zotovfor the JEM-EUSO Collaboration
{"title":"Reconstruction of energy and arrival directions of UHECRs registered by fluorescence telescopes with a neural network","authors":"Mikhail Zotovfor the JEM-EUSO Collaboration","doi":"arxiv-2408.02440","DOIUrl":null,"url":null,"abstract":"Fluorescence telescopes are important instruments widely used in modern\nexperiments for registering ultraviolet radiation from extensive air showers\n(EASs) generated by cosmic rays of ultra-high energies. We present a\nproof-of-concept convolutional neural network aimed at reconstruction of energy\nand arrival directions of primary particles using model data for two telescopes\ndeveloped by the international JEM-EUSO collaboration. We also demonstrate how\na simple convolutional encoder-decoder can be used for EAS track recognition.\nThe approach is generic and can be adopted for other fluorescence telescopes.","PeriodicalId":501163,"journal":{"name":"arXiv - PHYS - Instrumentation and Methods for Astrophysics","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Instrumentation and Methods for Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.02440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Fluorescence telescopes are important instruments widely used in modern experiments for registering ultraviolet radiation from extensive air showers (EASs) generated by cosmic rays of ultra-high energies. We present a proof-of-concept convolutional neural network aimed at reconstruction of energy and arrival directions of primary particles using model data for two telescopes developed by the international JEM-EUSO collaboration. We also demonstrate how a simple convolutional encoder-decoder can be used for EAS track recognition. The approach is generic and can be adopted for other fluorescence telescopes.
用神经网络重构荧光望远镜记录的超高频红外辐射的能量和到达方向
荧光望远镜是现代实验中广泛使用的重要仪器,用于记录由超高能量宇宙射线产生的大范围空气淋浴(EAS)的紫外线辐射。我们介绍了一个概念验证卷积神经网络,旨在利用国际 JEM-EUSO 合作组织开发的两台望远镜的模型数据重建原生粒子的能量和到达方向。我们还演示了如何将简单的卷积编码器-解码器用于 EAS 轨迹识别。该方法具有通用性,可用于其他荧光望远镜。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信