Refining Mark Burgin’s Case against the Church–Turing Thesis

IF 0.6 Q2 HISTORY & PHILOSOPHY OF SCIENCE
Edgar Graham Daylight
{"title":"Refining Mark Burgin’s Case against the Church–Turing Thesis","authors":"Edgar Graham Daylight","doi":"10.3390/philosophies9040122","DOIUrl":null,"url":null,"abstract":"The outputs of a Turing machine are not revealed for inputs on which the machine fails to halt. Why is an observer not allowed to see the generated output symbols as the machine operates? Building on the pioneering work of Mark Burgin, we introduce an extension of the Turing machine model with a visible output tape. As a subtle refinement to Burgin’s theory, we stipulate that the outputted symbols cannot be overwritten: at step i, the content of the output tape is a prefix of the content at step j, where i<j. Our Refined Burgin Machines (RBMs) compute more functions than Turing machines, but fewer than Burgin’s simple inductive Turing machines. We argue that RBMs more closely align with both human and electronic computers than Turing machines do. Consequently, RBMs challenge the dominance of Turing machines in computer science and beyond.","PeriodicalId":31446,"journal":{"name":"Philosophies","volume":"35 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/philosophies9040122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HISTORY & PHILOSOPHY OF SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The outputs of a Turing machine are not revealed for inputs on which the machine fails to halt. Why is an observer not allowed to see the generated output symbols as the machine operates? Building on the pioneering work of Mark Burgin, we introduce an extension of the Turing machine model with a visible output tape. As a subtle refinement to Burgin’s theory, we stipulate that the outputted symbols cannot be overwritten: at step i, the content of the output tape is a prefix of the content at step j, where i
马克-伯金对丘奇-图灵论的反驳
对于机器无法停止的输入,图灵机的输出不会显示。为什么观察者不能看到机器运行时生成的输出符号呢?在马克-伯金(Mark Burgin)的开创性工作基础上,我们引入了图灵机模型的扩展,即可见输出带。作为对伯金理论的微妙改进,我们规定输出符号不能被覆盖:在第 i 步,输出带的内容是第 j 步内容的前缀,其中 i
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Philosophies
Philosophies Multiple-
CiteScore
1.30
自引率
11.10%
发文量
122
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信