Testing identifying assumptions in Tobit Models

Santiago Acerenza, Otávio Bartalotti, Federico Veneri
{"title":"Testing identifying assumptions in Tobit Models","authors":"Santiago Acerenza, Otávio Bartalotti, Federico Veneri","doi":"arxiv-2408.02573","DOIUrl":null,"url":null,"abstract":"This paper develops sharp testable implications for Tobit and IV-Tobit\nmodels' identifying assumptions: linear index specification, (joint) normality\nof latent errors, and treatment (instrument) exogeneity and relevance. The new\nsharp testable equalities can detect all possible observable violations of the\nidentifying conditions. We propose a testing procedure for the model's validity\nusing existing inference methods for intersection bounds. Simulation results\nsuggests proper size for large samples and that the test is powerful to detect\nlarge violation of the exogeneity assumption and violations in the error\nstructure. Finally, we review and propose new alternative paths to partially\nidentify the parameters of interest under less restrictive assumptions.","PeriodicalId":501293,"journal":{"name":"arXiv - ECON - Econometrics","volume":"453 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - ECON - Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.02573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper develops sharp testable implications for Tobit and IV-Tobit models' identifying assumptions: linear index specification, (joint) normality of latent errors, and treatment (instrument) exogeneity and relevance. The new sharp testable equalities can detect all possible observable violations of the identifying conditions. We propose a testing procedure for the model's validity using existing inference methods for intersection bounds. Simulation results suggests proper size for large samples and that the test is powerful to detect large violation of the exogeneity assumption and violations in the error structure. Finally, we review and propose new alternative paths to partially identify the parameters of interest under less restrictive assumptions.
测试 Tobit 模型中的识别假设
本文针对 Tobit 和 IV-Tobit 模型的识别假设:线性指数规格、潜误差的(联合)正态性以及处理(工具)的外生性和相关性,提出了尖锐的可检验含义。新的尖锐可检验等式可以检测出所有可能违反识别条件的可观测行为。我们利用现有的交集边界推断方法,提出了模型有效性的检验程序。仿真结果表明了大样本的适当大小,而且该检验能够检测出大量违反外生性假设的情况和误差结构中的违规情况。最后,我们回顾并提出了在限制性较小的假设条件下部分识别相关参数的新路径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信