A methodology for direct parameter identification for experimental results using machine learning — Real world application to the highly non-linear deformation behavior of FRP

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Johannes Gerritzen, Andreas Hornig, Peter Winkler, Maik Gude
{"title":"A methodology for direct parameter identification for experimental results using machine learning — Real world application to the highly non-linear deformation behavior of FRP","authors":"Johannes Gerritzen, Andreas Hornig, Peter Winkler, Maik Gude","doi":"10.1016/j.commatsci.2024.113274","DOIUrl":null,"url":null,"abstract":"In this work, we demonstrate how Machine learning (ML) techniques can be employed to externalize the knowledge and time intensive process of material parameter identification. This is done on the example of a recent data driven material model for the non-linear shear behavior of glass fiber reinforced polypropylene (GF/PP) (Gerritzen, 2022). A convolutional neural network (CNN) based model architecture is trained to predict material modeling parameters based on the input of stress–strain-curves. The optimal model architecture and training setup are determined by hyperparameter optimization (HPO). Solely virtual data, generated using the target material model, is used throughout the training and HPO. The final CNN is capable of calculating model parameter combinations from experimental stress–strain-curves which lead to excellent agreement between experimental and associated model curve.","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.commatsci.2024.113274","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we demonstrate how Machine learning (ML) techniques can be employed to externalize the knowledge and time intensive process of material parameter identification. This is done on the example of a recent data driven material model for the non-linear shear behavior of glass fiber reinforced polypropylene (GF/PP) (Gerritzen, 2022). A convolutional neural network (CNN) based model architecture is trained to predict material modeling parameters based on the input of stress–strain-curves. The optimal model architecture and training setup are determined by hyperparameter optimization (HPO). Solely virtual data, generated using the target material model, is used throughout the training and HPO. The final CNN is capable of calculating model parameter combinations from experimental stress–strain-curves which lead to excellent agreement between experimental and associated model curve.
利用机器学习直接识别实验结果参数的方法 - FRP 高度非线性变形行为的实际应用
在这项工作中,我们展示了如何利用机器学习(ML)技术将知识和时间密集型的材料参数识别过程外部化。我们以最近针对玻璃纤维增强聚丙烯(GF/PP)非线性剪切行为的数据驱动材料模型(Gerritzen,2022 年)为例进行了说明。基于卷积神经网络(CNN)的模型架构经过训练,可根据输入的应力-应变曲线预测材料建模参数。通过超参数优化(HPO)确定最佳模型架构和训练设置。在整个训练和 HPO 过程中,只使用使用目标材料模型生成的虚拟数据。最终的 CNN 能够根据实验应力-应变曲线计算出模型参数组合,从而使实验曲线与相关模型曲线达到极佳的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational Materials Science
Computational Materials Science 工程技术-材料科学:综合
CiteScore
6.50
自引率
6.10%
发文量
665
审稿时长
26 days
期刊介绍: The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信