Kullback-Leibler-based characterizations of score-driven updates

Ramon de Punder, Timo Dimitriadis, Rutger-Jan Lange
{"title":"Kullback-Leibler-based characterizations of score-driven updates","authors":"Ramon de Punder, Timo Dimitriadis, Rutger-Jan Lange","doi":"arxiv-2408.02391","DOIUrl":null,"url":null,"abstract":"Score-driven models have been applied in some 400 published articles over the\nlast decade. Much of this literature cites the optimality result in Blasques et\nal. (2015), which, roughly, states that sufficiently small score-driven updates\nare unique in locally reducing the Kullback-Leibler (KL) divergence relative to\nthe true density for every observation. This is at odds with other well-known\noptimality results; the Kalman filter, for example, is optimal in a mean\nsquared error sense, but may move in the wrong direction for atypical\nobservations. We show that score-driven filters are, similarly, not guaranteed\nto improve the localized KL divergence at every observation. The seemingly\nstronger result in Blasques et al. (2015) is due to their use of an improper\n(localized) scoring rule. Even as a guaranteed improvement for every\nobservation is unattainable, we prove that sufficiently small score-driven\nupdates are unique in reducing the KL divergence relative to the true density\nin expectation. This positive$-$albeit weaker$-$result justifies the continued\nuse of score-driven models and places their information-theoretic properties on\nsolid footing.","PeriodicalId":501293,"journal":{"name":"arXiv - ECON - Econometrics","volume":"90 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - ECON - Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.02391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Score-driven models have been applied in some 400 published articles over the last decade. Much of this literature cites the optimality result in Blasques et al. (2015), which, roughly, states that sufficiently small score-driven updates are unique in locally reducing the Kullback-Leibler (KL) divergence relative to the true density for every observation. This is at odds with other well-known optimality results; the Kalman filter, for example, is optimal in a mean squared error sense, but may move in the wrong direction for atypical observations. We show that score-driven filters are, similarly, not guaranteed to improve the localized KL divergence at every observation. The seemingly stronger result in Blasques et al. (2015) is due to their use of an improper (localized) scoring rule. Even as a guaranteed improvement for every observation is unattainable, we prove that sufficiently small score-driven updates are unique in reducing the KL divergence relative to the true density in expectation. This positive$-$albeit weaker$-$result justifies the continued use of score-driven models and places their information-theoretic properties on solid footing.
基于库尔巴克-莱伯勒的分数驱动型更新特征
过去十年中,约有 400 篇已发表的文章应用了分数驱动模型。这些文献大多引用了 Blasques etal.(2015)中的最优性结果,该结果大致指出,足够小的分数驱动更新在局部减少每个观测值相对于真实密度的库尔巴克-莱伯勒(KL)发散方面是独一无二的。这与其他众所周知的最优结果并不一致;例如,卡尔曼滤波器在均方误差意义上是最优的,但对于非典型观测,它可能会向错误的方向移动。我们的研究表明,分数驱动滤波器同样不能保证改善每个观测值的局部 KL 发散。Blasques 等人(2015)看似更强的结果是由于他们使用了不恰当的(局部)评分规则。即使无法保证每次观测都有改进,我们也证明了足够小的评分驱动更新在减少相对于真实密度的 KL 分歧方面是独一无二的。这一积极的$$--尽管是较弱的$$--结果证明了继续使用分数驱动模型的合理性,并为其信息论特性奠定了坚实的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信