{"title":"Understanding the RBS/c spectra of irradiated tungsten: A computational study","authors":"","doi":"10.1016/j.commatsci.2024.113241","DOIUrl":null,"url":null,"abstract":"<div><p>Understanding and identifying the defect structure of irradiated materials is of utmost importance to understand the properties of the material. Many experimental techniques exist to detect defects, one of them is Rutherford Backscattering Spectroscopy in channeling mode. This method can reveal the disorder created by defects as a function of depth. However, in order to understand the underlying defect structure resulting in the measured disorder, we need to understand how different defect morphologies affect the experimental signal. In this article we computationally investigate how all commonly found irradiation-induced defect structures in tungsten affect the signal. We found that open volume defects, vacancies and voids, show practically no yield, whereas the interstitials and dislocation loops show significant yields. We was also found that dislocation loop orientation with respect to the RBS/c channeling direction affected the results significantly, where some loops became almost invisible.</p></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0927025624004622/pdfft?md5=44e8212e953c809979d5537cac0f38d6&pid=1-s2.0-S0927025624004622-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025624004622","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding and identifying the defect structure of irradiated materials is of utmost importance to understand the properties of the material. Many experimental techniques exist to detect defects, one of them is Rutherford Backscattering Spectroscopy in channeling mode. This method can reveal the disorder created by defects as a function of depth. However, in order to understand the underlying defect structure resulting in the measured disorder, we need to understand how different defect morphologies affect the experimental signal. In this article we computationally investigate how all commonly found irradiation-induced defect structures in tungsten affect the signal. We found that open volume defects, vacancies and voids, show practically no yield, whereas the interstitials and dislocation loops show significant yields. We was also found that dislocation loop orientation with respect to the RBS/c channeling direction affected the results significantly, where some loops became almost invisible.
期刊介绍:
The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.