Understanding the RBS/c spectra of irradiated tungsten: A computational study

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
{"title":"Understanding the RBS/c spectra of irradiated tungsten: A computational study","authors":"","doi":"10.1016/j.commatsci.2024.113241","DOIUrl":null,"url":null,"abstract":"<div><p>Understanding and identifying the defect structure of irradiated materials is of utmost importance to understand the properties of the material. Many experimental techniques exist to detect defects, one of them is Rutherford Backscattering Spectroscopy in channeling mode. This method can reveal the disorder created by defects as a function of depth. However, in order to understand the underlying defect structure resulting in the measured disorder, we need to understand how different defect morphologies affect the experimental signal. In this article we computationally investigate how all commonly found irradiation-induced defect structures in tungsten affect the signal. We found that open volume defects, vacancies and voids, show practically no yield, whereas the interstitials and dislocation loops show significant yields. We was also found that dislocation loop orientation with respect to the RBS/c channeling direction affected the results significantly, where some loops became almost invisible.</p></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0927025624004622/pdfft?md5=44e8212e953c809979d5537cac0f38d6&pid=1-s2.0-S0927025624004622-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025624004622","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding and identifying the defect structure of irradiated materials is of utmost importance to understand the properties of the material. Many experimental techniques exist to detect defects, one of them is Rutherford Backscattering Spectroscopy in channeling mode. This method can reveal the disorder created by defects as a function of depth. However, in order to understand the underlying defect structure resulting in the measured disorder, we need to understand how different defect morphologies affect the experimental signal. In this article we computationally investigate how all commonly found irradiation-induced defect structures in tungsten affect the signal. We found that open volume defects, vacancies and voids, show practically no yield, whereas the interstitials and dislocation loops show significant yields. We was also found that dislocation loop orientation with respect to the RBS/c channeling direction affected the results significantly, where some loops became almost invisible.

Abstract Image

了解辐照钨的 RBS/c 光谱:计算研究
了解和识别辐照材料的缺陷结构对于了解材料的特性至关重要。目前有许多检测缺陷的实验技术,其中之一是通道模式下的卢瑟福背散射光谱法。这种方法可以揭示缺陷造成的无序状态与深度的函数关系。然而,为了了解导致所测无序度的潜在缺陷结构,我们需要了解不同的缺陷形态如何影响实验信号。在本文中,我们通过计算研究了钨中所有常见的辐照诱导缺陷结构对信号的影响。我们发现,开放体积缺陷、空位和空洞几乎没有产率,而间隙和位错环则有显著的产率。我们还发现,位错环相对于 RBS/c 沟道方向的取向对结果影响很大,有些环几乎看不见。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational Materials Science
Computational Materials Science 工程技术-材料科学:综合
CiteScore
6.50
自引率
6.10%
发文量
665
审稿时长
26 days
期刊介绍: The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信