Efficient simulation of the SABR model

Jaehyuk Choi, Lilian Hu, Yue Kuen Kwok
{"title":"Efficient simulation of the SABR model","authors":"Jaehyuk Choi, Lilian Hu, Yue Kuen Kwok","doi":"arxiv-2408.01898","DOIUrl":null,"url":null,"abstract":"We propose an efficient and reliable simulation scheme for the\nstochastic-alpha-beta-rho (SABR) model. The two challenges of the SABR\nsimulation lie in sampling (i) the integrated variance conditional on terminal\nvolatility and (ii) the terminal price conditional on terminal volatility and\nintegrated variance. For the first sampling procedure, we analytically derive\nthe first four moments of the conditional average variance, and sample it from\nthe moment-matched shifted lognormal approximation. For the second sampling\nprocedure, we approximate the conditional terminal price as a\nconstant-elasticity-of-variance (CEV) distribution. Our CEV approximation\npreserves the martingale condition and precludes arbitrage, which is a key\nadvantage over Islah's approximation used in most SABR simulation schemes in\nthe literature. Then, we adopt the exact sampling method of the CEV\ndistribution based on the shifted-Poisson-mixture Gamma random variable. Our\nenhanced procedures avoid the tedious Laplace inversion algorithm for sampling\nintegrated variance and non-efficient inverse transform sampling of the forward\nprice in some of the earlier simulation schemes. Numerical results demonstrate\nour simulation scheme to be highly efficient, accurate, and reliable.","PeriodicalId":501084,"journal":{"name":"arXiv - QuantFin - Mathematical Finance","volume":"50 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.01898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose an efficient and reliable simulation scheme for the stochastic-alpha-beta-rho (SABR) model. The two challenges of the SABR simulation lie in sampling (i) the integrated variance conditional on terminal volatility and (ii) the terminal price conditional on terminal volatility and integrated variance. For the first sampling procedure, we analytically derive the first four moments of the conditional average variance, and sample it from the moment-matched shifted lognormal approximation. For the second sampling procedure, we approximate the conditional terminal price as a constant-elasticity-of-variance (CEV) distribution. Our CEV approximation preserves the martingale condition and precludes arbitrage, which is a key advantage over Islah's approximation used in most SABR simulation schemes in the literature. Then, we adopt the exact sampling method of the CEV distribution based on the shifted-Poisson-mixture Gamma random variable. Our enhanced procedures avoid the tedious Laplace inversion algorithm for sampling integrated variance and non-efficient inverse transform sampling of the forward price in some of the earlier simulation schemes. Numerical results demonstrate our simulation scheme to be highly efficient, accurate, and reliable.
高效模拟 SABR 模型
我们为随机-阿尔法-贝塔-罗(SABR)模型提出了一种高效可靠的模拟方案。SABR 模拟的两个挑战在于:(i) 取样终端波动率条件下的综合方差;(ii) 取样终端波动率和综合方差条件下的终端价格。对于第一个取样过程,我们分析得出条件平均方差的前四个矩,并从矩匹配的移位对数正态近似中取样。在第二个抽样过程中,我们将条件终端价格近似为实际方差弹性(CEV)分布。我们的 CEV 近似值保留了马丁格尔条件并排除了套利,这是与文献中大多数 SABR 模拟方案中使用的 Islah 近似值相比的一个关键优势。然后,我们采用基于移位泊松混合伽马随机变量的 CEV 分布精确抽样方法。我们改进的程序避免了早期一些模拟方案中用于采样积分方差的繁琐的拉普拉斯反演算法和对正向价格的非高效反变换采样。数值结果表明,我们的模拟方案是高效、准确和可靠的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信