A Path Integral Approach for Time-Dependent Hamiltonians with Applications to Derivatives Pricing

Mark Stedman, Luca Capriotti
{"title":"A Path Integral Approach for Time-Dependent Hamiltonians with Applications to Derivatives Pricing","authors":"Mark Stedman, Luca Capriotti","doi":"arxiv-2408.02064","DOIUrl":null,"url":null,"abstract":"We generalize a semi-classical path integral approach originally introduced\nby Giachetti and Tognetti [Phys. Rev. Lett. 55, 912 (1985)] and Feynman and\nKleinert [Phys. Rev. A 34, 5080 (1986)] to time-dependent Hamiltonians, thus\nextending the scope of the method to the pricing of financial derivatives. We\nillustrate the accuracy of the approach by presenting results for the\nwell-known, but analytically intractable, Black-Karasinski model for the\ndynamics of interest rates. The accuracy and computational efficiency of this\npath integral approach makes it a viable alternative to fully-numerical schemes\nfor a variety of applications in derivatives pricing.","PeriodicalId":501084,"journal":{"name":"arXiv - QuantFin - Mathematical Finance","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.02064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We generalize a semi-classical path integral approach originally introduced by Giachetti and Tognetti [Phys. Rev. Lett. 55, 912 (1985)] and Feynman and Kleinert [Phys. Rev. A 34, 5080 (1986)] to time-dependent Hamiltonians, thus extending the scope of the method to the pricing of financial derivatives. We illustrate the accuracy of the approach by presenting results for the well-known, but analytically intractable, Black-Karasinski model for the dynamics of interest rates. The accuracy and computational efficiency of this path integral approach makes it a viable alternative to fully-numerical schemes for a variety of applications in derivatives pricing.
与时间相关的哈密顿模型的路径积分法及其在衍生品定价中的应用
我们将最初由 Giachetti 和 Tognetti [Phys. Rev. Lett. 55, 912 (1985)]以及 Feynman 和 Kleinert [Phys. Rev. A 34, 5080 (1986)]引入的半经典路径积分方法推广到时间相关的哈密顿,并将该方法的范围扩展到金融衍生品的定价。我们展示了著名的、但在分析上难以解决的 Black-Karasinski 利率动力学模型的结果,从而证明了该方法的准确性。这种路径积分方法的精确性和计算效率使其成为衍生品定价领域各种应用中完全数值方案的可行替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信