Jian Jiang, Lu Ke, Long Chen, Bozheng Dou, Yueying Zhu, Jie Liu, Bengong Zhang, Tianshou Zhou, Guo-Wei Wei
{"title":"Transformer technology in molecular science","authors":"Jian Jiang, Lu Ke, Long Chen, Bozheng Dou, Yueying Zhu, Jie Liu, Bengong Zhang, Tianshou Zhou, Guo-Wei Wei","doi":"10.1002/wcms.1725","DOIUrl":null,"url":null,"abstract":"<p>A transformer is the foundational architecture behind large language models designed to handle sequential data by using mechanisms of self-attention to weigh the importance of different elements, enabling efficient processing and understanding of complex patterns. Recently, transformer-based models have become some of the most popular and powerful deep learning (DL) algorithms in molecular science, owing to their distinctive architectural characteristics and proficiency in handling intricate data. These models leverage the capacity of transformer architectures to capture complex hierarchical dependencies within sequential data. As the applications of transformers in molecular science are very widespread, in this review, we only focus on the technical aspects of transformer technology in molecule domain. Specifically, we will provide an in-depth investigation into the algorithms of transformer-based machine learning techniques in molecular science. The models under consideration include generative pre-trained transformer (GPT), bidirectional and auto-regressive transformers (BART), bidirectional encoder representations from transformers (BERT), graph transformer, transformer-XL, text-to-text transfer transformer, vision transformers (ViT), detection transformer (DETR), conformer, contrastive language-image pre-training (CLIP), sparse transformers, and mobile and efficient transformers. By examining the inner workings of these models, we aim to elucidate how their architectural innovations contribute to their effectiveness in processing complex molecular data. We will also discuss promising trends in transformer models within the context of molecular science, emphasizing their technical capabilities and potential for interdisciplinary research. This review seeks to provide a comprehensive understanding of the transformer-based machine learning techniques that are driving advancements in molecular science.</p><p>This article is categorized under:\n </p>","PeriodicalId":236,"journal":{"name":"Wiley Interdisciplinary Reviews: Computational Molecular Science","volume":"14 4","pages":""},"PeriodicalIF":16.8000,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/wcms.1725","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews: Computational Molecular Science","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/wcms.1725","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A transformer is the foundational architecture behind large language models designed to handle sequential data by using mechanisms of self-attention to weigh the importance of different elements, enabling efficient processing and understanding of complex patterns. Recently, transformer-based models have become some of the most popular and powerful deep learning (DL) algorithms in molecular science, owing to their distinctive architectural characteristics and proficiency in handling intricate data. These models leverage the capacity of transformer architectures to capture complex hierarchical dependencies within sequential data. As the applications of transformers in molecular science are very widespread, in this review, we only focus on the technical aspects of transformer technology in molecule domain. Specifically, we will provide an in-depth investigation into the algorithms of transformer-based machine learning techniques in molecular science. The models under consideration include generative pre-trained transformer (GPT), bidirectional and auto-regressive transformers (BART), bidirectional encoder representations from transformers (BERT), graph transformer, transformer-XL, text-to-text transfer transformer, vision transformers (ViT), detection transformer (DETR), conformer, contrastive language-image pre-training (CLIP), sparse transformers, and mobile and efficient transformers. By examining the inner workings of these models, we aim to elucidate how their architectural innovations contribute to their effectiveness in processing complex molecular data. We will also discuss promising trends in transformer models within the context of molecular science, emphasizing their technical capabilities and potential for interdisciplinary research. This review seeks to provide a comprehensive understanding of the transformer-based machine learning techniques that are driving advancements in molecular science.
期刊介绍:
Computational molecular sciences harness the power of rigorous chemical and physical theories, employing computer-based modeling, specialized hardware, software development, algorithm design, and database management to explore and illuminate every facet of molecular sciences. These interdisciplinary approaches form a bridge between chemistry, biology, and materials sciences, establishing connections with adjacent application-driven fields in both chemistry and biology. WIREs Computational Molecular Science stands as a platform to comprehensively review and spotlight research from these dynamic and interconnected fields.