Toward an efficient second-order method for computing the surface gravitational potential on spherical-polar meshes

IF 1.1 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS
Oliver Gressel, Udo Ziegler
{"title":"Toward an efficient second-order method for computing the surface gravitational potential on spherical-polar meshes","authors":"Oliver Gressel,&nbsp;Udo Ziegler","doi":"10.1002/asna.20240056","DOIUrl":null,"url":null,"abstract":"<p>Astrophysical accretion discs that carry a significant mass compared with their central object are subject to the effect of self-gravity. In the context of circumstellar discs, this can, for instance, cause fragmentation of the disc gas, and—under suitable conditions—lead to the direct formation of gas-giant planets. If one wants to study these phenomena, the disc's gravitational potential needs to be obtained by solving the Poisson equation. This requires to specify suitable boundary conditions. In the case of a spherical-polar computational mesh, a standard multipole expansion for obtaining boundary values is not practicable. We hence compare two alternative methods for overcoming this limitation. The first method is based on a known Green's function expansion (termed “CCGF”) of the potential, while the second (termed “James' method”) uses a surface screening mass approach with a suitable discrete Green's function. We demonstrate second-order convergence for both methods and test the weak scaling behavior when using thousands of computational cores. Overall, James' method is found superior owing to its favorable algorithmic complexity of <span></span><math>\n <semantics>\n <mrow>\n <mo>∼</mo>\n <mi>O</mi>\n <mfenced>\n <msup>\n <mi>n</mi>\n <mn>3</mn>\n </msup>\n </mfenced>\n </mrow>\n <annotation>$$ \\sim \\mathcal{O}\\left({n}^3\\right) $$</annotation>\n </semantics></math> compared with the <span></span><math>\n <semantics>\n <mrow>\n <mo>∼</mo>\n <mi>O</mi>\n <mfenced>\n <msup>\n <mi>n</mi>\n <mn>4</mn>\n </msup>\n </mfenced>\n </mrow>\n <annotation>$$ \\sim \\mathcal{O}\\left({n}^4\\right) $$</annotation>\n </semantics></math> scaling of the CCGF method.</p>","PeriodicalId":55442,"journal":{"name":"Astronomische Nachrichten","volume":"345 8","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/asna.20240056","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomische Nachrichten","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asna.20240056","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Astrophysical accretion discs that carry a significant mass compared with their central object are subject to the effect of self-gravity. In the context of circumstellar discs, this can, for instance, cause fragmentation of the disc gas, and—under suitable conditions—lead to the direct formation of gas-giant planets. If one wants to study these phenomena, the disc's gravitational potential needs to be obtained by solving the Poisson equation. This requires to specify suitable boundary conditions. In the case of a spherical-polar computational mesh, a standard multipole expansion for obtaining boundary values is not practicable. We hence compare two alternative methods for overcoming this limitation. The first method is based on a known Green's function expansion (termed “CCGF”) of the potential, while the second (termed “James' method”) uses a surface screening mass approach with a suitable discrete Green's function. We demonstrate second-order convergence for both methods and test the weak scaling behavior when using thousands of computational cores. Overall, James' method is found superior owing to its favorable algorithmic complexity of O n 3 $$ \sim \mathcal{O}\left({n}^3\right) $$ compared with the O n 4 $$ \sim \mathcal{O}\left({n}^4\right) $$ scaling of the CCGF method.

Abstract Image

在球极网格上计算表面引力势的高效二阶方法
与中心天体相比,天体吸积盘的质量很大,会受到自重力的影响。例如,在环星盘的情况下,这会导致盘内气体碎裂,并在适当条件下直接形成气态巨行星。如果要研究这些现象,需要通过求解泊松方程来获得星盘的引力势能。这需要指定合适的边界条件。在球极计算网格的情况下,用标准多极扩展来获取边界值是不可行的。因此,我们比较了两种克服这一限制的替代方法。第一种方法基于已知格林函数的势展开(称为 "CCGF"),而第二种方法(称为 "詹姆斯方法")则使用表面屏蔽质量方法和合适的离散格林函数。我们证明了这两种方法的二阶收敛性,并测试了使用数千个计算核心时的弱扩展行为。总体而言,与 CCGF 方法的扩展性相比,詹姆斯方法的算法复杂性更优。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Astronomische Nachrichten
Astronomische Nachrichten 地学天文-天文与天体物理
CiteScore
1.80
自引率
11.10%
发文量
57
审稿时长
4-8 weeks
期刊介绍: Astronomische Nachrichten, founded in 1821 by H. C. Schumacher, is the oldest astronomical journal worldwide still being published. Famous astronomical discoveries and important papers on astronomy and astrophysics published in more than 300 volumes of the journal give an outstanding representation of the progress of astronomical research over the last 180 years. Today, Astronomical Notes/ Astronomische Nachrichten publishes articles in the field of observational and theoretical astrophysics and related topics in solar-system and solar physics. Additional, papers on astronomical instrumentation ground-based and space-based as well as papers about numerical astrophysical techniques and supercomputer modelling are covered. Papers can be completed by short video sequences in the electronic version. Astronomical Notes/ Astronomische Nachrichten also publishes special issues of meeting proceedings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信