Online Deterministic Minimum Cost Bipartite Matching with Delays on a Line

Tung-Wei Kuo
{"title":"Online Deterministic Minimum Cost Bipartite Matching with Delays on a Line","authors":"Tung-Wei Kuo","doi":"arxiv-2408.02526","DOIUrl":null,"url":null,"abstract":"We study the online minimum cost bipartite perfect matching with delays\nproblem. In this problem, $m$ servers and $m$ requests arrive over time, and an\nonline algorithm can delay the matching between servers and requests by paying\nthe delay cost. The objective is to minimize the total distance and delay cost.\nWhen servers and requests lie in a known metric space, there is a randomized\n$O(\\log n)$-competitive algorithm, where $n$ is the size of the metric space.\nWhen the metric space is unknown a priori, Azar and Jacob-Fanani proposed a\ndeterministic\n$O\\left(\\frac{1}{\\epsilon}m^{\\log\\left(\\frac{3+\\epsilon}{2}\\right)}\\right)$-competitive\nalgorithm for any fixed $\\epsilon > 0$. This competitive ratio is tight when $n\n= 1$ and becomes $O(m^{0.59})$ for sufficiently small $\\epsilon$. In this paper, we improve upon the result of Azar and Jacob-Fanani for the\ncase where servers and requests are on the real line, providing a deterministic\n$\\tilde{O}(m^{0.5})$-competitive algorithm. Our algorithm is based on the\nRobust Matching (RM) algorithm proposed by Raghvendra for the minimum cost\nbipartite perfect matching problem. In this problem, delay is not allowed, and\nall servers arrive in the beginning. When a request arrives, the RM algorithm\nimmediately matches the request to a free server based on the request's minimum\n$t$-net-cost augmenting path, where $t > 1$ is a constant. In our algorithm, we\ndelay the matching of a request until its waiting time exceeds its minimum\n$t$-net-cost divided by $t$.","PeriodicalId":501525,"journal":{"name":"arXiv - CS - Data Structures and Algorithms","volume":"2013 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Data Structures and Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.02526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the online minimum cost bipartite perfect matching with delays problem. In this problem, $m$ servers and $m$ requests arrive over time, and an online algorithm can delay the matching between servers and requests by paying the delay cost. The objective is to minimize the total distance and delay cost. When servers and requests lie in a known metric space, there is a randomized $O(\log n)$-competitive algorithm, where $n$ is the size of the metric space. When the metric space is unknown a priori, Azar and Jacob-Fanani proposed a deterministic $O\left(\frac{1}{\epsilon}m^{\log\left(\frac{3+\epsilon}{2}\right)}\right)$-competitive algorithm for any fixed $\epsilon > 0$. This competitive ratio is tight when $n = 1$ and becomes $O(m^{0.59})$ for sufficiently small $\epsilon$. In this paper, we improve upon the result of Azar and Jacob-Fanani for the case where servers and requests are on the real line, providing a deterministic $\tilde{O}(m^{0.5})$-competitive algorithm. Our algorithm is based on the Robust Matching (RM) algorithm proposed by Raghvendra for the minimum cost bipartite perfect matching problem. In this problem, delay is not allowed, and all servers arrive in the beginning. When a request arrives, the RM algorithm immediately matches the request to a free server based on the request's minimum $t$-net-cost augmenting path, where $t > 1$ is a constant. In our algorithm, we delay the matching of a request until its waiting time exceeds its minimum $t$-net-cost divided by $t$.
带延迟的在线确定性最小成本双向匹配
我们研究的是有延迟的在线最小成本双网完全匹配问题。在这个问题中,有 $m$ 服务器和 $m$ 请求随着时间的推移而到达,在线算法可以通过支付延迟成本来延迟服务器和请求之间的匹配。当服务器和请求位于已知的度量空间时,有一种随机的$O(\log n)$ 竞争算法,其中$n$ 是度量空间的大小。当度量空间是先验未知的时候,Azar 和 Jacob-Fanani 提出了对于任意固定的 $\epsilon > 0$ 的确定性$O(\frac{1}\{epsilon}m^{\log\left(\frac{3+\epsilon}{2}\right)}right)$竞争算法。当 $n= 1$ 时,这个竞争比很紧,当 $epsilon$ 足够小时,竞争比变成了 $O(m^{0.59})$。本文针对服务器和请求都在实线上的情况,改进了 Azar 和 Jacob-Fanani 的结果,提供了一种确定性$\tilde{O}(m^{0.5})$竞争算法。我们的算法是基于 Raghvendra 针对最小成本双边完全匹配问题提出的完全匹配(Robust Matching,RM)算法。在这个问题中,不允许延迟,所有服务器都在一开始就到达。当请求到达时,RM 算法会立即根据请求的最小 $t$ 净成本增强路径(其中 $t > 1$ 为常数)将请求匹配到空闲的服务器上。在我们的算法中,我们会延迟请求的匹配时间,直到请求的等待时间超过其最小 t 值-网络成本除以 t 值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信