Deterministic Online Bipartite Edge Coloring

Joakim Blikstad, Ola Svensson, Radu Vintan, David Wajc
{"title":"Deterministic Online Bipartite Edge Coloring","authors":"Joakim Blikstad, Ola Svensson, Radu Vintan, David Wajc","doi":"arxiv-2408.03661","DOIUrl":null,"url":null,"abstract":"We study online bipartite edge coloring, with nodes on one side of the graph\nrevealed sequentially. The trivial greedy algorithm is $(2-o(1))$-competitive,\nwhich is optimal for graphs of low maximum degree, $\\Delta=O(\\log n)$ [BNMN\nIPL'92]. Numerous online edge-coloring algorithms outperforming the greedy\nalgorithm in various settings were designed over the years (e.g., AGKM FOCS'03,\nBMM SODA'10, CPW FOCS'19, BGW SODA'21, KLSST STOC'22, BSVW STOC'24), all\ncrucially relying on randomization. A commonly-held belief, first stated by\n[BNMN IPL'92], is that randomization is necessary to outperform greedy. Surprisingly, we refute this belief, by presenting a deterministic algorithm\nthat beats greedy for sufficiently large $\\Delta=\\Omega(\\log n)$, and in\nparticular has competitive ratio $\\frac{e}{e-1}+o(1)$ for all\n$\\Delta=\\omega(\\log n)$. We obtain our result via a new and surprisingly simple\nrandomized algorithm that works against adaptive adversaries (as opposed to\noblivious adversaries assumed by prior work), which implies the existence of a\nsimilarly-competitive deterministic algorithm [BDBKTW STOC'90].","PeriodicalId":501525,"journal":{"name":"arXiv - CS - Data Structures and Algorithms","volume":"53 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Data Structures and Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.03661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study online bipartite edge coloring, with nodes on one side of the graph revealed sequentially. The trivial greedy algorithm is $(2-o(1))$-competitive, which is optimal for graphs of low maximum degree, $\Delta=O(\log n)$ [BNMN IPL'92]. Numerous online edge-coloring algorithms outperforming the greedy algorithm in various settings were designed over the years (e.g., AGKM FOCS'03, BMM SODA'10, CPW FOCS'19, BGW SODA'21, KLSST STOC'22, BSVW STOC'24), all crucially relying on randomization. A commonly-held belief, first stated by [BNMN IPL'92], is that randomization is necessary to outperform greedy. Surprisingly, we refute this belief, by presenting a deterministic algorithm that beats greedy for sufficiently large $\Delta=\Omega(\log n)$, and in particular has competitive ratio $\frac{e}{e-1}+o(1)$ for all $\Delta=\omega(\log n)$. We obtain our result via a new and surprisingly simple randomized algorithm that works against adaptive adversaries (as opposed to oblivious adversaries assumed by prior work), which implies the existence of a similarly-competitive deterministic algorithm [BDBKTW STOC'90].
确定性在线双方形边缘着色
我们研究的是在线双方边着色,图一边的节点按顺序显示。琐碎的贪婪算法是$(2-o(1))$竞争性的,对于低最大度的图是最优的,$\Delta=O(\log n)$ [BNMNIPL'92]。多年来,许多在线边着色算法在各种情况下都优于贪婪算法(如 AGKM FOCS'03、BMM SODA'10、CPW FOCS'19、BGW SODA'21、KLSST STOC'22、BSVW STOC'24),但都主要依赖于随机化。BNMN IPL'92]首次提出的一个普遍观点是,随机化是超越贪婪算法的必要条件。令人惊讶的是,我们提出了一种确定性算法,这种算法在足够大的$\Delta=\Omega(\log n)$条件下优于贪婪算法,特别是在所有$\Delta=\omega(\log n)$条件下,这种算法的竞争比率为$\frac{e}{e-1}+o(1)$。我们通过一种新的、令人吃惊的、更简单的随机化算法得到了我们的结果,这种算法可以对付自适应对手(而不是先前工作中假设的鲁莽对手),这意味着存在类似的有竞争力的确定性算法[BDBKTW STOC'90]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信