Regularized Unconstrained Weakly Submodular Maximization

Yanhui Zhu, Samik Basu, A. Pavan
{"title":"Regularized Unconstrained Weakly Submodular Maximization","authors":"Yanhui Zhu, Samik Basu, A. Pavan","doi":"arxiv-2408.04620","DOIUrl":null,"url":null,"abstract":"Submodular optimization finds applications in machine learning and data\nmining. In this paper, we study the problem of maximizing functions of the form\n$h = f-c$, where $f$ is a monotone, non-negative, weakly submodular set\nfunction and $c$ is a modular function. We design a deterministic approximation\nalgorithm that runs with ${{O}}(\\frac{n}{\\epsilon}\\log \\frac{n}{\\gamma\n\\epsilon})$ oracle calls to function $h$, and outputs a set ${S}$ such that\n$h({S}) \\geq\n\\gamma(1-\\epsilon)f(OPT)-c(OPT)-\\frac{c(OPT)}{\\gamma(1-\\epsilon)}\\log\\frac{f(OPT)}{c(OPT)}$,\nwhere $\\gamma$ is the submodularity ratio of $f$. Existing algorithms for this\nproblem either admit a worse approximation ratio or have quadratic runtime. We\nalso present an approximation ratio of our algorithm for this problem with an\napproximate oracle of $f$. We validate our theoretical results through\nextensive empirical evaluations on real-world applications, including vertex\ncover and influence diffusion problems for submodular utility function $f$, and\nBayesian A-Optimal design for weakly submodular $f$. Our experimental results\ndemonstrate that our algorithms efficiently achieve high-quality solutions.","PeriodicalId":501525,"journal":{"name":"arXiv - CS - Data Structures and Algorithms","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Data Structures and Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04620","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Submodular optimization finds applications in machine learning and data mining. In this paper, we study the problem of maximizing functions of the form $h = f-c$, where $f$ is a monotone, non-negative, weakly submodular set function and $c$ is a modular function. We design a deterministic approximation algorithm that runs with ${{O}}(\frac{n}{\epsilon}\log \frac{n}{\gamma \epsilon})$ oracle calls to function $h$, and outputs a set ${S}$ such that $h({S}) \geq \gamma(1-\epsilon)f(OPT)-c(OPT)-\frac{c(OPT)}{\gamma(1-\epsilon)}\log\frac{f(OPT)}{c(OPT)}$, where $\gamma$ is the submodularity ratio of $f$. Existing algorithms for this problem either admit a worse approximation ratio or have quadratic runtime. We also present an approximation ratio of our algorithm for this problem with an approximate oracle of $f$. We validate our theoretical results through extensive empirical evaluations on real-world applications, including vertex cover and influence diffusion problems for submodular utility function $f$, and Bayesian A-Optimal design for weakly submodular $f$. Our experimental results demonstrate that our algorithms efficiently achieve high-quality solutions.
正规化无约束弱次模态最大化
亚模态优化在机器学习和数据挖掘中都有应用。在本文中,我们研究了形式为$h = f-c$ 的函数最大化问题,其中$f$ 是单调、非负、弱次模集合函数,$c$ 是模函数。我们设计了一种确定性的近似计算算法,运行时只需调用 ${{O}}(\frac{n}{\epsilon}\log \frac{n}{\gamma\epsilon})$ 神谕函数 $h$、并输出一个集合 ${S}$ ,使得$h({S}) \geq\gamma(1-\epsilon)f(OPT)-c(OPT)-\frac{c(OPT)}{\gamma(1-\epsilon)}\log\frac{f(OPT)}{c(OPT)}$ ,其中$\gamma$ 是$f$ 的次模化比率。针对这一问题的现有算法要么是逼近率较差,要么是运行时间为二次方。我们还针对这个问题提出了我们算法的近似率,并给出了 $f$ 的近似神谕。我们通过对实际应用的广泛经验评估来验证我们的理论结果,包括针对亚模态效用函数 $f$ 的顶点覆盖和影响扩散问题,以及针对弱亚模态 $f$ 的贝叶斯 A 最佳设计。实验结果表明,我们的算法能高效地获得高质量的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信