{"title":"Minimal Laminations and Level Sets of 1-Harmonic Functions","authors":"Aidan Backus","doi":"10.1007/s12220-024-01758-8","DOIUrl":null,"url":null,"abstract":"<p>We collect several results concerning regularity of minimal laminations, and governing the various modes of convergence for sequences of minimal laminations. We then apply this theory to prove that a function has locally least gradient (is 1-harmonic) iff its level sets are a minimal lamination; this resolves an open problem of Daskalopoulos and Uhlenbeck.</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01758-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We collect several results concerning regularity of minimal laminations, and governing the various modes of convergence for sequences of minimal laminations. We then apply this theory to prove that a function has locally least gradient (is 1-harmonic) iff its level sets are a minimal lamination; this resolves an open problem of Daskalopoulos and Uhlenbeck.