Blow-Up of Solutions for the Fourth-Order Schrödinger Equation with Combined Power-Type Nonlinearities

Zaiyun Zhang, Dandan Wang, Jiannan Chen, Zihan Xie, Chengzhao Xu
{"title":"Blow-Up of Solutions for the Fourth-Order Schrödinger Equation with Combined Power-Type Nonlinearities","authors":"Zaiyun Zhang, Dandan Wang, Jiannan Chen, Zihan Xie, Chengzhao Xu","doi":"10.1007/s12220-024-01747-x","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we mainly consider the blow-up solutions of the fourth-order Schrödinger equation with combined power-type nonlinearities </p><span>$$\\begin{aligned} iu_{t}+\\alpha \\Delta ^{2}u+\\beta \\Delta u+\\lambda _{1}\\left| u \\right| ^{\\sigma _{1}}u+\\lambda _{2}\\left| u \\right| ^{\\sigma _{2}}u=0, \\end{aligned}$$</span><p>where <span>\\(4&lt;n&lt;8,\\)</span> <span>\\(\\beta =\\left\\{ { 0, 1}\\right\\} , \\alpha ,\\,\\lambda _{1}\\in \\mathbb {R}\\)</span> and <span>\\(\\lambda _{2}&lt;0\\)</span>. Firstly, using Banach’s fixed point theorem, iterative method and nonlinear estimates, we establish the local well-posedness of solutions with the initial data <span>\\(u_{0}\\in H^{2}(\\mathbb {R}^{n})\\)</span>. Then, based on variational analysis theory for dynamical system, using localized Virial identity, we establish a new Morawetz estimates and upper bound estimates to prove the existence of blow-up solutions in finite time. Finally, applying the local well-posedness above, we demonstrate the blow-up criteria of solutions and prove it by contradiction method.</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01747-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we mainly consider the blow-up solutions of the fourth-order Schrödinger equation with combined power-type nonlinearities

$$\begin{aligned} iu_{t}+\alpha \Delta ^{2}u+\beta \Delta u+\lambda _{1}\left| u \right| ^{\sigma _{1}}u+\lambda _{2}\left| u \right| ^{\sigma _{2}}u=0, \end{aligned}$$

where \(4<n<8,\) \(\beta =\left\{ { 0, 1}\right\} , \alpha ,\,\lambda _{1}\in \mathbb {R}\) and \(\lambda _{2}<0\). Firstly, using Banach’s fixed point theorem, iterative method and nonlinear estimates, we establish the local well-posedness of solutions with the initial data \(u_{0}\in H^{2}(\mathbb {R}^{n})\). Then, based on variational analysis theory for dynamical system, using localized Virial identity, we establish a new Morawetz estimates and upper bound estimates to prove the existence of blow-up solutions in finite time. Finally, applying the local well-posedness above, we demonstrate the blow-up criteria of solutions and prove it by contradiction method.

具有组合功率型非线性的四阶薛定谔方程的炸裂解
本文主要考虑具有组合幂型非线性的四阶薛定谔方程的炸毁解 $$\begin{aligned} iu_{t}+\alpha \Delta ^{2}u+\beta \Delta u+\lambda _{1}\left| u \right| ^{\sigma _{1}}u+\lambda _{2}}\left| u \right| ^{\sigma _{2}}u=0、\end{aligned}$$where (4<;n<8,\(\beta =\left\{ 0, 1}\right\}, \alpha ,\,\lambda _{1}\in \mathbb {R}\)和(\lambda _{2}<0\).首先,利用巴纳赫定点定理、迭代法和非线性估计,我们建立了初始数据为 \(u_{0}\in H^{2}(\mathbb {R}^{n})\) 的解的局部可求性。然后,基于动力系统的变分分析理论,利用局部维里亚尔特性,建立新的莫拉维兹估计和上界估计,证明有限时间内炸毁解的存在性。最后,应用上述局部好摆性,证明解的炸毁准则,并用矛盾法加以证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信