Spectral Stability of Constrained Solitary Waves for the Generalized Singular Perturbed KdV Equation

Fangyu Han, Yuetian Gao
{"title":"Spectral Stability of Constrained Solitary Waves for the Generalized Singular Perturbed KdV Equation","authors":"Fangyu Han, Yuetian Gao","doi":"10.1007/s12220-024-01757-9","DOIUrl":null,"url":null,"abstract":"<p>This paper is systematically concerned with the solitary waves on the constrained manifold preserved the <span>\\(L^2\\)</span>-momentum conservation for the generalized singular perturbed KdV equation with <span>\\(L^2\\)</span><i>-subcritical, critical and supercritical nonlinearities</i>, which is a long-wave approximation to the capillary-gravity waves in an infinitely long channel with a flat bottom. First, using the profile decomposition in <span>\\(H^2\\)</span> and the optimal Gagliardo–Nirenberg inequality, we prove the existence of subcritical ground state solitary waves and describe their asymptotic behavior. Second, we obtain some sufficient conditions for the existence and non-existence of critical ground states, and then prove the existence of critical and supercritical ground state solitary waves on the Derrick–Pohozaev manifold by utilizing the new minimax argument and the numerical simulation of the best Gagliardo–Nirenberg embedding constant. Meanwhile, we use the moving plane method to obtain the existence of positive and radially symmetric solutions. Furthermore, we study the concentration behavior of the critical ground state solutions. Finally, the spectral stability of the ground state solitary wave solutions is discussed by using the instability index theorem.</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01757-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is systematically concerned with the solitary waves on the constrained manifold preserved the \(L^2\)-momentum conservation for the generalized singular perturbed KdV equation with \(L^2\)-subcritical, critical and supercritical nonlinearities, which is a long-wave approximation to the capillary-gravity waves in an infinitely long channel with a flat bottom. First, using the profile decomposition in \(H^2\) and the optimal Gagliardo–Nirenberg inequality, we prove the existence of subcritical ground state solitary waves and describe their asymptotic behavior. Second, we obtain some sufficient conditions for the existence and non-existence of critical ground states, and then prove the existence of critical and supercritical ground state solitary waves on the Derrick–Pohozaev manifold by utilizing the new minimax argument and the numerical simulation of the best Gagliardo–Nirenberg embedding constant. Meanwhile, we use the moving plane method to obtain the existence of positive and radially symmetric solutions. Furthermore, we study the concentration behavior of the critical ground state solutions. Finally, the spectral stability of the ground state solitary wave solutions is discussed by using the instability index theorem.

Abstract Image

广义奇异扰动 KdV 方程受约束孤波的频谱稳定性
本文系统地研究了在\(L^2\)-动量守恒的广义奇异扰动KdV方程的约束流形上的孤波,该方程具有\(L^2\)-次临界、临界和超临界非线性,是无限长的平底通道中毛细重力波的长波近似。首先,我们利用 \(H^2\) 中的剖面分解和最优 Gagliardo-Nirenberg 不等式,证明了亚临界基态孤波的存在,并描述了它们的渐近行为。其次,我们得到了临界基态存在和不存在的一些充分条件,然后利用新的最小值论证和最佳加利亚尔多-尼伦堡嵌入常数的数值模拟,证明了德里克-波霍扎耶夫流形上临界和超临界基态孤波的存在。同时,我们利用移动平面法获得了正解和径向对称解的存在性。此外,我们还研究了临界基态解的集中行为。最后,利用不稳定指数定理讨论了基态孤波解的谱稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信