Semiparametrically optimal cointegration test

IF 9.9 3区 经济学 Q1 ECONOMICS
Bo Zhou
{"title":"Semiparametrically optimal cointegration test","authors":"Bo Zhou","doi":"10.1016/j.jeconom.2024.105816","DOIUrl":null,"url":null,"abstract":"<div><p>This paper aims to address the issue of semiparametric efficiency for cointegration rank testing in finite-order vector autoregressive models, where the innovation distribution is considered an infinite-dimensional nuisance parameter. Our asymptotic analysis relies on Le Cam’s theory of limit experiment, which in this context is of the Locally Asymptotically Brownian Functional (LABF) type likelihood ratios. By exploiting the structural representation of LABF, an Ornstein–Uhlenbeck experiment, we develop the asymptotic power envelopes of asymptotically invariant tests for both cases with and without time trends. We propose feasible tests based on a nonparametrically estimated density and demonstrate that their power can achieve the semiparametric power envelopes, making them semiparametrically optimal. We validate the theoretical results through large-sample simulations and illustrate satisfactory size control and excellent power performance of our tests under small samples. In both cases with and without time trends, we show that a remarkable amount of additional power can be obtained from non-Gaussian distributions.</p></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"242 2","pages":"Article 105816"},"PeriodicalIF":9.9000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometrics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304407624001611","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper aims to address the issue of semiparametric efficiency for cointegration rank testing in finite-order vector autoregressive models, where the innovation distribution is considered an infinite-dimensional nuisance parameter. Our asymptotic analysis relies on Le Cam’s theory of limit experiment, which in this context is of the Locally Asymptotically Brownian Functional (LABF) type likelihood ratios. By exploiting the structural representation of LABF, an Ornstein–Uhlenbeck experiment, we develop the asymptotic power envelopes of asymptotically invariant tests for both cases with and without time trends. We propose feasible tests based on a nonparametrically estimated density and demonstrate that their power can achieve the semiparametric power envelopes, making them semiparametrically optimal. We validate the theoretical results through large-sample simulations and illustrate satisfactory size control and excellent power performance of our tests under small samples. In both cases with and without time trends, we show that a remarkable amount of additional power can be obtained from non-Gaussian distributions.

半参数最优协整检验
本文旨在解决有限阶向量自回归模型中协整秩检验的半参数效率问题,其中创新分布被视为无穷维滋扰参数。我们的渐近分析依赖于 Le Cam 的极限实验理论,在此背景下,该理论属于局部渐近布朗函数(LABF)类型的似然比。通过利用 LABF 的结构表示,即 Ornstein-Uhlenbeck 实验,我们为有时间趋势和无时间趋势的两种情况建立了渐近不变检验的渐近功率包络。我们提出了基于非参数估计密度的可行检验,并证明其功率可以达到半参数功率包络,使其成为半参数最优检验。我们通过大样本模拟验证了理论结果,并说明了我们的检验在小样本下令人满意的规模控制和出色的功率性能。在有时间趋势和无时间趋势的两种情况下,我们都证明了非高斯分布可以获得显著的额外功率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Econometrics
Journal of Econometrics 社会科学-数学跨学科应用
CiteScore
8.60
自引率
1.60%
发文量
220
审稿时长
3-8 weeks
期刊介绍: The Journal of Econometrics serves as an outlet for important, high quality, new research in both theoretical and applied econometrics. The scope of the Journal includes papers dealing with identification, estimation, testing, decision, and prediction issues encountered in economic research. Classical Bayesian statistics, and machine learning methods, are decidedly within the range of the Journal''s interests. The Annals of Econometrics is a supplement to the Journal of Econometrics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信