Continuous-Time Neural Networks Can Stably Memorize Random Spike Trains

Hugo Aguettaz, Hans-Andrea Loeliger
{"title":"Continuous-Time Neural Networks Can Stably Memorize Random Spike Trains","authors":"Hugo Aguettaz, Hans-Andrea Loeliger","doi":"arxiv-2408.01166","DOIUrl":null,"url":null,"abstract":"The paper explores the capability of continuous-time recurrent neural\nnetworks to store and recall precisely timed spike patterns. We show (by\nnumerical experiments) that this is indeed possible: within some range of\nparameters, any random score of spike trains (for all neurons in the network)\ncan be robustly memorized and autonomously reproduced with stable accurate\nrelative timing of all spikes, with probability close to one. We also\ndemonstrate associative recall under noisy conditions. In these experiments, the required synaptic weights are computed offline, to\nsatisfy a template that encourages temporal stability.","PeriodicalId":501347,"journal":{"name":"arXiv - CS - Neural and Evolutionary Computing","volume":"113 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Neural and Evolutionary Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.01166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The paper explores the capability of continuous-time recurrent neural networks to store and recall precisely timed spike patterns. We show (by numerical experiments) that this is indeed possible: within some range of parameters, any random score of spike trains (for all neurons in the network) can be robustly memorized and autonomously reproduced with stable accurate relative timing of all spikes, with probability close to one. We also demonstrate associative recall under noisy conditions. In these experiments, the required synaptic weights are computed offline, to satisfy a template that encourages temporal stability.
连续时间神经网络能稳定记忆随机尖峰列车
本文探讨了连续时间递归神经网络存储和调用精确定时的尖峰模式的能力。我们通过数值实验证明了这确实是可能的:在一定参数范围内,(网络中所有神经元的)尖峰列车的任何随机分数都能被稳健地记忆下来,并以接近于 1 的概率自主地复制出所有尖峰的稳定精确的相对定时。我们还演示了噪声条件下的联想记忆。在这些实验中,所需的突触权重是离线计算的,以满足鼓励时间稳定性的模板。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信