Connective Viewpoints of Signal-to-Noise Diffusion Models

Khanh Doan, Long Tung Vuong, Tuan Nguyen, Anh Tuan Bui, Quyen Tran, Thanh-Toan Do, Dinh Phung, Trung Le
{"title":"Connective Viewpoints of Signal-to-Noise Diffusion Models","authors":"Khanh Doan, Long Tung Vuong, Tuan Nguyen, Anh Tuan Bui, Quyen Tran, Thanh-Toan Do, Dinh Phung, Trung Le","doi":"arxiv-2408.04221","DOIUrl":null,"url":null,"abstract":"Diffusion models (DM) have become fundamental components of generative\nmodels, excelling across various domains such as image creation, audio\ngeneration, and complex data interpolation. Signal-to-Noise diffusion models\nconstitute a diverse family covering most state-of-the-art diffusion models.\nWhile there have been several attempts to study Signal-to-Noise (S2N) diffusion\nmodels from various perspectives, there remains a need for a comprehensive\nstudy connecting different viewpoints and exploring new perspectives. In this\nstudy, we offer a comprehensive perspective on noise schedulers, examining\ntheir role through the lens of the signal-to-noise ratio (SNR) and its\nconnections to information theory. Building upon this framework, we have\ndeveloped a generalized backward equation to enhance the performance of the\ninference process.","PeriodicalId":501347,"journal":{"name":"arXiv - CS - Neural and Evolutionary Computing","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Neural and Evolutionary Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Diffusion models (DM) have become fundamental components of generative models, excelling across various domains such as image creation, audio generation, and complex data interpolation. Signal-to-Noise diffusion models constitute a diverse family covering most state-of-the-art diffusion models. While there have been several attempts to study Signal-to-Noise (S2N) diffusion models from various perspectives, there remains a need for a comprehensive study connecting different viewpoints and exploring new perspectives. In this study, we offer a comprehensive perspective on noise schedulers, examining their role through the lens of the signal-to-noise ratio (SNR) and its connections to information theory. Building upon this framework, we have developed a generalized backward equation to enhance the performance of the inference process.
信噪扩散模型的关联观点
扩散模型(DM)已成为生成模型的基本组成部分,在图像创建、音频生成和复杂数据插值等多个领域表现出色。信噪比扩散模型是一个多样化的模型系列,涵盖了大多数最先进的扩散模型。虽然已经有很多人尝试从不同角度研究信噪比(S2N)扩散模型,但仍然需要一项连接不同观点和探索新视角的全面研究。在本研究中,我们从信噪比(SNR)及其与信息论的联系的角度,全面审视了噪声调度器的作用。在此框架基础上,我们开发了一种广义的后向方程,以提高推理过程的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信