Pinned distances of planar sets with low dimension

Jacob B. Fiedler, D. M. Stull
{"title":"Pinned distances of planar sets with low dimension","authors":"Jacob B. Fiedler, D. M. Stull","doi":"arxiv-2408.00889","DOIUrl":null,"url":null,"abstract":"In this paper, we give improved bounds on the Hausdorff dimension of pinned\ndistance sets of planar sets with dimension strictly less than one. As the\nplanar set becomes more regular (i.e., the Hausdorff and packing dimension\nbecome closer), our lower bound on the Hausdorff dimension of the pinned\ndistance set improves. Additionally, we prove the existence of small universal\nsets for pinned distances. In particular, we show that, if a Borel set\n$X\\subseteq\\mathbb{R}^2$ is weakly regular ($\\dim_H(X) = \\dim_P(X)$), and\n$\\dim_H(X) > 1$, then \\begin{equation*} \\sup\\limits_{x\\in X}\\dim_H(\\Delta_x Y) = \\min\\{\\dim_H(Y), 1\\} \\end{equation*} for every Borel set $Y\\subseteq\\mathbb{R}^2$. Furthermore, if $X$ is also\ncompact and Alfors-David regular, then for every Borel set\n$Y\\subseteq\\mathbb{R}^2$, there exists some $x\\in X$ such that \\begin{equation*} \\dim_H(\\Delta_x Y) = \\min\\{\\dim_H(Y), 1\\}. \\end{equation*}","PeriodicalId":501306,"journal":{"name":"arXiv - MATH - Logic","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.00889","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we give improved bounds on the Hausdorff dimension of pinned distance sets of planar sets with dimension strictly less than one. As the planar set becomes more regular (i.e., the Hausdorff and packing dimension become closer), our lower bound on the Hausdorff dimension of the pinned distance set improves. Additionally, we prove the existence of small universal sets for pinned distances. In particular, we show that, if a Borel set $X\subseteq\mathbb{R}^2$ is weakly regular ($\dim_H(X) = \dim_P(X)$), and $\dim_H(X) > 1$, then \begin{equation*} \sup\limits_{x\in X}\dim_H(\Delta_x Y) = \min\{\dim_H(Y), 1\} \end{equation*} for every Borel set $Y\subseteq\mathbb{R}^2$. Furthermore, if $X$ is also compact and Alfors-David regular, then for every Borel set $Y\subseteq\mathbb{R}^2$, there exists some $x\in X$ such that \begin{equation*} \dim_H(\Delta_x Y) = \min\{\dim_H(Y), 1\}. \end{equation*}
低维度平面集的钉距
在本文中,我们给出了维度严格小于 1 的平面集的钉距集的豪斯多夫维度的改进边界。随着平面集变得越来越规则(即 Hausdorff 维度和堆积维度越来越接近),我们对钉扎距离集的 Hausdorff 维度的下界也随之提高。此外,我们还证明了钉住距离小普遍集的存在。我们特别证明了,如果一个波尔集合$X(subseteq/mathbb{R}^2$是弱正则的($\dim_H(X) = \dim_P(X)$),并且$\dim_H(X) > 1$,那么}\sup\limits_{x\in X}\dim_H(\Delta_x Y) = \min\{\dim_H(Y), 1\}\end{equation*} for every Borel set $Y\subseteq\mathbb{R}^2$.此外,如果 $X$ 也是紧凑的、Alfors-David 正则的,那么对于每个 Borel 集$Y(subseteq\mathbb{R}^2$),在 X$ 中存在一些 $x\in ,使得 \begin{equation*}\dim_H(\Delta_x Y) = \min\{dim_H(Y), 1\}.\end{equation*}
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信