A note on surjective cardinals

Jiaheng Jin, Guozhen Shen
{"title":"A note on surjective cardinals","authors":"Jiaheng Jin, Guozhen Shen","doi":"arxiv-2408.04287","DOIUrl":null,"url":null,"abstract":"For cardinals $\\mathfrak{a}$ and $\\mathfrak{b}$, we write\n$\\mathfrak{a}=^\\ast\\mathfrak{b}$ if there are sets $A$ and $B$ of cardinalities\n$\\mathfrak{a}$ and $\\mathfrak{b}$, respectively, such that there are partial\nsurjections from $A$ onto $B$ and from $B$ onto $A$. $=^\\ast$-equivalence\nclasses are called surjective cardinals. In this article, we show that\n$\\mathsf{ZF}+\\mathsf{DC}_\\kappa$, where $\\kappa$ is a fixed aleph, cannot prove\nthat surjective cardinals form a cardinal algebra, which gives a negative\nsolution to a question proposed by Truss [J. Truss, Ann. Pure Appl. Logic 27,\n165--207 (1984)]. Nevertheless, we show that surjective cardinals form a\n``surjective cardinal algebra'', whose postulates are almost the same with\nthose of a cardinal algebra, except that the refinement postulate is replaced\nby the finite refinement postulate. This yields a smoother proof of the\ncancellation law for surjective cardinals, which states that\n$m\\cdot\\mathfrak{a}=^\\ast m\\cdot\\mathfrak{b}$ implies\n$\\mathfrak{a}=^\\ast\\mathfrak{b}$ for all cardinals $\\mathfrak{a},\\mathfrak{b}$\nand all nonzero natural numbers $m$.","PeriodicalId":501306,"journal":{"name":"arXiv - MATH - Logic","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For cardinals $\mathfrak{a}$ and $\mathfrak{b}$, we write $\mathfrak{a}=^\ast\mathfrak{b}$ if there are sets $A$ and $B$ of cardinalities $\mathfrak{a}$ and $\mathfrak{b}$, respectively, such that there are partial surjections from $A$ onto $B$ and from $B$ onto $A$. $=^\ast$-equivalence classes are called surjective cardinals. In this article, we show that $\mathsf{ZF}+\mathsf{DC}_\kappa$, where $\kappa$ is a fixed aleph, cannot prove that surjective cardinals form a cardinal algebra, which gives a negative solution to a question proposed by Truss [J. Truss, Ann. Pure Appl. Logic 27, 165--207 (1984)]. Nevertheless, we show that surjective cardinals form a ``surjective cardinal algebra'', whose postulates are almost the same with those of a cardinal algebra, except that the refinement postulate is replaced by the finite refinement postulate. This yields a smoother proof of the cancellation law for surjective cardinals, which states that $m\cdot\mathfrak{a}=^\ast m\cdot\mathfrak{b}$ implies $\mathfrak{a}=^\ast\mathfrak{b}$ for all cardinals $\mathfrak{a},\mathfrak{b}$ and all nonzero natural numbers $m$.
关于投射红心的说明
对于红心$\mathfrak{a}$和$\mathfrak{b}$,如果存在红心分别为$\mathfrak{a}$和$\mathfrak{b}$的集合$A$和$B$,从而存在从$A$到$B$和从$B$到$A$的偏射,我们就写$\mathfrak{a}=^\ast\mathfrak{b}$。$=^\ast$-等价类被称为投射红心。在本文中,我们证明了$\mathsf{ZF}+\mathsf{DC}_\kappa$,其中$\kappa$是一个固定的aleph,不能证明投射红心构成了一个红心代数,这给出了特鲁斯[J. Truss, Ann. Pure Appl. Logic 27,165--207 (1984)]提出的一个问题的否定解答。然而,我们证明了投射红心构成了一个 "投射红心代数",其公设与红心代数的公设几乎相同,只是细化公设被有限细化公设所取代。对于所有的红心数$\mathfrak{a}, \mathfrak{b}$和所有非零自然数$m$来说,这意味着$\mathfrak{a}=^\ast\mathfrak{b}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信