Jingyuan Shen, Jiahui Xu, Yao Duan, Fengxia Zhang, Yizhong Ma
{"title":"Reliability modelling for systems degrading in Markovian environments with protective auxiliary components","authors":"Jingyuan Shen, Jiahui Xu, Yao Duan, Fengxia Zhang, Yizhong Ma","doi":"10.1177/1748006x241263922","DOIUrl":null,"url":null,"abstract":"Systems with dependent main and auxiliary components have been extensively investigated in the reliability field recently, but the influence of the changing environment has been less taken into consideration. Motivated by some real applications, when the protective auxiliary component fails, the degradation/failure rate of the main component varies as it is exposed to different environments. To bridge the gap between research and practice, in this paper the influences of the dynamic environments and the component dependencies are both incorporated to develop a new reliability model for systems with main and auxiliary components. A continuous-time homogeneous Markov process is used to model the evolution of the environments. When the auxiliary component works, it could protect the main component from the negative impact of the environment. Once the auxiliary component fails, the main component would degrade at different rates according to different environment states. Based on the proposed model, first the reliability of the system is derived in a recursive way. Besides, an opportunistic inspection and maintenance policy is designed for the system, and some important indexes such as the limiting average availability and the long-run average cost are derived. Finally, through numerical examples, the applicability of the proposed model and sensitivity analysis of the model parameters are discussed.","PeriodicalId":51266,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part O-Journal of Risk and Reliability","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part O-Journal of Risk and Reliability","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/1748006x241263922","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
Systems with dependent main and auxiliary components have been extensively investigated in the reliability field recently, but the influence of the changing environment has been less taken into consideration. Motivated by some real applications, when the protective auxiliary component fails, the degradation/failure rate of the main component varies as it is exposed to different environments. To bridge the gap between research and practice, in this paper the influences of the dynamic environments and the component dependencies are both incorporated to develop a new reliability model for systems with main and auxiliary components. A continuous-time homogeneous Markov process is used to model the evolution of the environments. When the auxiliary component works, it could protect the main component from the negative impact of the environment. Once the auxiliary component fails, the main component would degrade at different rates according to different environment states. Based on the proposed model, first the reliability of the system is derived in a recursive way. Besides, an opportunistic inspection and maintenance policy is designed for the system, and some important indexes such as the limiting average availability and the long-run average cost are derived. Finally, through numerical examples, the applicability of the proposed model and sensitivity analysis of the model parameters are discussed.
期刊介绍:
The Journal of Risk and Reliability is for researchers and practitioners who are involved in the field of risk analysis and reliability engineering. The remit of the Journal covers concepts, theories, principles, approaches, methods and models for the proper understanding, assessment, characterisation and management of the risk and reliability of engineering systems. The journal welcomes papers which are based on mathematical and probabilistic analysis, simulation and/or optimisation, as well as works highlighting conceptual and managerial issues. Papers that provide perspectives on current practices and methods, and how to improve these, are also welcome