Semi-commutants of Toeplitz Operators on Fock–Sobolev Space of Nonnegative Orders

Pub Date : 2024-08-05 DOI:10.1007/s11785-024-01574-6
Jie Qin
{"title":"Semi-commutants of Toeplitz Operators on Fock–Sobolev Space of Nonnegative Orders","authors":"Jie Qin","doi":"10.1007/s11785-024-01574-6","DOIUrl":null,"url":null,"abstract":"<p>We make a progress towards describing the semi-commutants of Toeplitz operators on the Fock–Sobolev space of nonnegative orders. We generalize the results in Bauer et al. (J Funct Anal 268:3017, 2015) and Qin (Bull Sci Math 179:103156, 2022). For the certain symbol spaces, we obtain two Toeplitz operators can semi-commute only in the trivial case, which is different from what is known for the classical Fock space. As an application, we consider the conjecture which was shown to be false for the Fock space in Ma et al. (J Funct Anal 277:2644–2663, 2019). The main result of this paper says that there is a fundamental difference between the geometries of the Fock and Fock–Sobolev space.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11785-024-01574-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We make a progress towards describing the semi-commutants of Toeplitz operators on the Fock–Sobolev space of nonnegative orders. We generalize the results in Bauer et al. (J Funct Anal 268:3017, 2015) and Qin (Bull Sci Math 179:103156, 2022). For the certain symbol spaces, we obtain two Toeplitz operators can semi-commute only in the trivial case, which is different from what is known for the classical Fock space. As an application, we consider the conjecture which was shown to be false for the Fock space in Ma et al. (J Funct Anal 277:2644–2663, 2019). The main result of this paper says that there is a fundamental difference between the geometries of the Fock and Fock–Sobolev space.

分享
查看原文
非负数阶的 Fock-Sobolev 空间上 Toeplitz 算子的半通约数
我们在描述非负阶的福克-索博廖夫空间上的托普利兹算子的半通约子方面取得了进展。我们概括了 Bauer 等人(J Funct Anal 268:3017, 2015)和 Qin(Bull Sci Math 179:103156, 2022)的结果。对于某些符号空间,我们得到两个托普利兹算子只能在三元情况下半相交,这与经典福克空间的已知情况不同。作为应用,我们考虑了 Ma 等人(J Funct Anal 277:2644-2663, 2019)中对 Fock 空间证明为假的猜想。本文的主要结果表明,福克空间和福克-索博廖夫空间的几何图形存在根本区别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信