The effect of an auxiliary spring on the decrease of contact resistance and contact temperature for power automotive connector

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Amine Beloufa
{"title":"The effect of an auxiliary spring on the decrease of contact resistance and contact temperature for power automotive connector","authors":"Amine Beloufa","doi":"10.1177/09544070241266872","DOIUrl":null,"url":null,"abstract":"Power automotive connectors used to connect two electrical systems in an electric vehicle should resist the rising of electric power or electric current. The latter can cause a rise in contact temperature by the Joule effect and can damage a connector improperly designed. The purpose of this work is to study experimentally and numerically the influence of the addition of a second spring on the ability of a power connector to transmit a high current. For this reason, an experimental test has been held on a connector without a second spring to measure contact resistance and contact temperature; then, a finite element model FEM of this connector was developed to compare and validate the numerical results with the experimental results. In addition, another FE model with a second spring was used to minimize contact resistance and contact temperature. Moreover, a theoretical model has shown its effectiveness in contact temperature and contact area calculations; it provides good agreement with experimental and numerical results. Numerical results show that the effect of the addition of a 2nd spring on the decrease of the contact temperature and contact resistance is significant. In addition, the thermo-electrical analysis by finite element shows that the current limit supported by a power connector with an auxiliary spring will equal twice the current supported by a power connector with one spring. FE mechanical analysis shows that the maximum mechanical stress in the connector with an auxiliary spring remains lower than the 2nd spring material yield stress. Finally, experimental and numerical results are in good agreement.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544070241266872","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Power automotive connectors used to connect two electrical systems in an electric vehicle should resist the rising of electric power or electric current. The latter can cause a rise in contact temperature by the Joule effect and can damage a connector improperly designed. The purpose of this work is to study experimentally and numerically the influence of the addition of a second spring on the ability of a power connector to transmit a high current. For this reason, an experimental test has been held on a connector without a second spring to measure contact resistance and contact temperature; then, a finite element model FEM of this connector was developed to compare and validate the numerical results with the experimental results. In addition, another FE model with a second spring was used to minimize contact resistance and contact temperature. Moreover, a theoretical model has shown its effectiveness in contact temperature and contact area calculations; it provides good agreement with experimental and numerical results. Numerical results show that the effect of the addition of a 2nd spring on the decrease of the contact temperature and contact resistance is significant. In addition, the thermo-electrical analysis by finite element shows that the current limit supported by a power connector with an auxiliary spring will equal twice the current supported by a power connector with one spring. FE mechanical analysis shows that the maximum mechanical stress in the connector with an auxiliary spring remains lower than the 2nd spring material yield stress. Finally, experimental and numerical results are in good agreement.
辅助弹簧对降低汽车电源连接器接触电阻和接触温度的影响
用于连接电动汽车两个电气系统的汽车电源连接器应能抵抗电力或电流的上升。后者会因焦耳效应导致接触温度升高,并可能损坏设计不当的连接器。这项工作的目的是通过实验和数值计算研究添加第二个弹簧对电源连接器传输大电流能力的影响。为此,对一个不带第二弹簧的连接器进行了实验测试,测量接触电阻和接触温度;然后,开发了该连接器的有限元模型 FEM,将数值结果与实验结果进行比较和验证。此外,还使用了另一个带有第二弹簧的有限元模型,以最大限度地降低接触电阻和接触温度。此外,理论模型在接触温度和接触面积计算方面也显示出其有效性;它与实验结果和数值结果具有良好的一致性。数值结果表明,增加第二个弹簧对降低接触温度和接触电阻有显著效果。此外,通过有限元进行的热电分析表明,带有辅助弹簧的电源连接器所支持的极限电流是带有一个弹簧的电源连接器所支持电流的两倍。有限元机械分析表明,带有辅助弹簧的连接器的最大机械应力仍低于第二弹簧材料的屈服应力。最后,实验结果和数值结果非常吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信