{"title":"Anthropogenic and meteorological effects on the counts and sizes of moderate and extreme wildfires","authors":"Elizabeth S. Lawler, Benjamin A. Shaby","doi":"10.1002/env.2873","DOIUrl":null,"url":null,"abstract":"<p>The growing frequency and size of wildfires across the US necessitates accurate quantitative assessment of evolving wildfire behavior to predict risk from future extreme wildfires. We build a joint model of wildfire counts and burned areas, regressing key model parameters on climate and demographic covariates. We use extended generalized Pareto distributions to model the full distribution of burned areas, capturing both moderate and extreme sizes, while leveraging extreme value theory to focus particularly on the right tail. We model wildfire counts with a zero-inflated negative binomial model, and join the wildfire counts and burned areas sub-models using a temporally-varying shared random effect. Our model successfully captures the trends of wildfire counts and burned areas. By investigating the predictive power of different sets of covariates, we find that fire indices are better predictors of wildfire burned area behavior than individual climate covariates, whereas climate covariates are influential drivers of wildfire occurrence behavior.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/env.2873","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/env.2873","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The growing frequency and size of wildfires across the US necessitates accurate quantitative assessment of evolving wildfire behavior to predict risk from future extreme wildfires. We build a joint model of wildfire counts and burned areas, regressing key model parameters on climate and demographic covariates. We use extended generalized Pareto distributions to model the full distribution of burned areas, capturing both moderate and extreme sizes, while leveraging extreme value theory to focus particularly on the right tail. We model wildfire counts with a zero-inflated negative binomial model, and join the wildfire counts and burned areas sub-models using a temporally-varying shared random effect. Our model successfully captures the trends of wildfire counts and burned areas. By investigating the predictive power of different sets of covariates, we find that fire indices are better predictors of wildfire burned area behavior than individual climate covariates, whereas climate covariates are influential drivers of wildfire occurrence behavior.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.