Molecular dynamics simulations illuminate the role of sequence context in the ELF3-PrD-based temperature sensing mechanism in plants

Richard J Lindsay, Rafael Giordano Viegas, VITOR B P LEITE, Philip Anthony Wigge, Sonya M Hanson
{"title":"Molecular dynamics simulations illuminate the role of sequence context in the ELF3-PrD-based temperature sensing mechanism in plants","authors":"Richard J Lindsay, Rafael Giordano Viegas, VITOR B P LEITE, Philip Anthony Wigge, Sonya M Hanson","doi":"10.1101/2024.08.09.607385","DOIUrl":null,"url":null,"abstract":"The evening complex (EC) is a tripartite DNA repressor and a core component of the circadian clock that provides a mechanism for temperature-responsive growth and development of many plants. ELF3, a component of the EC, is a disordered scaffolding protein that blocks transcription of growth genes at low temperature. At increased temperature EC DNA binding is disrupted and ELF3 is sequestered in a reversible nuclear condensate, allowing transcription and growth to proceed. The condensation is driven by a low complexity prion-like domain (PrD), and the sensitivity of the temperature response is modulated by the length of a variable polyQ tract, with a longer polyQ tract corresponding to enhanced condensate formation and hypocotyl growth at increased temperature. Here, a series of computational studies provides evidence that polyQ tracts promote formation of temperature-sensitive helices in flanking residues with potential impacts for EC stability under increasing temperature. REST2 simulations uncover a heat-induced population of condensation-prone conformations that results from the exposure of 'sticky' aromatic residues by temperature-responsive breaking of long-range contacts. Coarse-grained Martini simulations reveal both polyQ tract length and sequence context modulate the temperature dependence of cluster formation. Understanding the molecular mechanism underlying the ELF3-PrD temperature response in plants has implications for technologies including modular temperature-response elements for heat-responsive protein design and agricultural advances to enable optimization of crop yields and allow plants to thrive in increasingly inhospitable environments.","PeriodicalId":501048,"journal":{"name":"bioRxiv - Biophysics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Biophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.09.607385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The evening complex (EC) is a tripartite DNA repressor and a core component of the circadian clock that provides a mechanism for temperature-responsive growth and development of many plants. ELF3, a component of the EC, is a disordered scaffolding protein that blocks transcription of growth genes at low temperature. At increased temperature EC DNA binding is disrupted and ELF3 is sequestered in a reversible nuclear condensate, allowing transcription and growth to proceed. The condensation is driven by a low complexity prion-like domain (PrD), and the sensitivity of the temperature response is modulated by the length of a variable polyQ tract, with a longer polyQ tract corresponding to enhanced condensate formation and hypocotyl growth at increased temperature. Here, a series of computational studies provides evidence that polyQ tracts promote formation of temperature-sensitive helices in flanking residues with potential impacts for EC stability under increasing temperature. REST2 simulations uncover a heat-induced population of condensation-prone conformations that results from the exposure of 'sticky' aromatic residues by temperature-responsive breaking of long-range contacts. Coarse-grained Martini simulations reveal both polyQ tract length and sequence context modulate the temperature dependence of cluster formation. Understanding the molecular mechanism underlying the ELF3-PrD temperature response in plants has implications for technologies including modular temperature-response elements for heat-responsive protein design and agricultural advances to enable optimization of crop yields and allow plants to thrive in increasingly inhospitable environments.
分子动力学模拟揭示了序列上下文在植物基于 ELF3-PrD 的温度感应机制中的作用
黄昏复合体(EC)是一种三方 DNA 抑制因子,也是昼夜节律钟的核心组成部分,它为许多植物的温度响应性生长和发育提供了一种机制。ELF3是EC的一个组成部分,它是一种紊乱的支架蛋白,在低温下会阻碍生长基因的转录。温度升高时,EC 的 DNA 结合被破坏,ELF3 被封闭在可逆的核凝结物中,从而使转录和生长得以继续。凝结是由一个低复杂度的朊病毒样结构域(PrD)驱动的,温度反应的敏感性受可变多Q束长度的调节,较长的多Q束在温度升高时会增强凝结的形成和下胚轴的生长。在此,一系列计算研究提供了证据,证明polyQ束能促进侧翼残基中温度敏感螺旋的形成,从而对温度升高时EC的稳定性产生潜在影响。REST2 模拟发现了由热诱导的易凝结构象群,这是由于 "粘性 "芳香残基暴露于温度反应性长程接触断裂所致。粗粒度马蒂尼模拟显示,多Q束长度和序列上下文都会调节聚类形成的温度依赖性。了解植物中ELF3-PrD温度响应的分子机制对各种技术都有影响,包括用于热响应蛋白质设计的模块化温度响应元件和农业技术进步,从而优化作物产量并使植物在日益恶劣的环境中茁壮成长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信