Mobility-induced kinetic effects in multicomponent mixtures

IF 1.8 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
EPL Pub Date : 2024-08-08 DOI:10.1209/0295-5075/ad60f3
F. C. Thewes, M. Krüger and P. Sollich
{"title":"Mobility-induced kinetic effects in multicomponent mixtures","authors":"F. C. Thewes, M. Krüger and P. Sollich","doi":"10.1209/0295-5075/ad60f3","DOIUrl":null,"url":null,"abstract":"We give an overview exploring the role of kinetics in multicomponent mixtures. Compared to the most commonly studied binary (single species plus solvent) case, multicomponent fluids show a rich interplay between kinetics and thermodynamics due to the possibility of fractionation, interdiffusion of mixture components and collective motion. This leads to a competition between multiple timescales that change depending on the underlying kinetics. At high densities, crowding effects are relevant and non-equilibrium structures can become long-lived. We present the main approaches for the study of kinetic effects in multicomponents mixtures, including the role of crowding, and explore their consequences for equilibrium and non-equilibrium scenarios. We conclude by identifying the main challenges in the field.","PeriodicalId":11738,"journal":{"name":"EPL","volume":"26 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPL","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1209/0295-5075/ad60f3","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We give an overview exploring the role of kinetics in multicomponent mixtures. Compared to the most commonly studied binary (single species plus solvent) case, multicomponent fluids show a rich interplay between kinetics and thermodynamics due to the possibility of fractionation, interdiffusion of mixture components and collective motion. This leads to a competition between multiple timescales that change depending on the underlying kinetics. At high densities, crowding effects are relevant and non-equilibrium structures can become long-lived. We present the main approaches for the study of kinetic effects in multicomponents mixtures, including the role of crowding, and explore their consequences for equilibrium and non-equilibrium scenarios. We conclude by identifying the main challenges in the field.
多组分混合物中由流动性引起的动力学效应
我们概述了动力学在多组分混合物中的作用。与最常研究的二元(单一物种加溶剂)情况相比,多组分流体由于可能存在分馏、混合物成分的相互扩散和集体运动,动力学和热力学之间呈现出丰富的相互作用。这导致了多种时标之间的竞争,而这些时标的变化取决于基本动力学。在高密度条件下,拥挤效应会产生影响,非平衡结构会变得长寿。我们介绍了研究多组分混合物动力学效应的主要方法,包括拥挤效应的作用,并探讨了它们对平衡和非平衡情景的影响。最后,我们确定了该领域的主要挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
EPL
EPL 物理-物理:综合
CiteScore
3.30
自引率
5.60%
发文量
332
审稿时长
1.9 months
期刊介绍: General physics – physics of elementary particles and fields – nuclear physics – atomic, molecular and optical physics – classical areas of phenomenology – physics of gases, plasmas and electrical discharges – condensed matter – cross-disciplinary physics and related areas of science and technology. Letters submitted to EPL should contain new results, ideas, concepts, experimental methods, theoretical treatments, including those with application potential and be of broad interest and importance to one or several sections of the physics community. The presentation should satisfy the specialist, yet remain understandable to the researchers in other fields through a suitable, clearly written introduction and conclusion (if appropriate). EPL also publishes Comments on Letters previously published in the Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信