Dynamic J-A model improved by waveform scale parameters and R-L type fractional derivatives

COMPEL Pub Date : 2024-08-13 DOI:10.1108/compel-01-2024-0027
Long Chen, Zheyu Zhang, Ni An, Xin Wen, Tong Ben
{"title":"Dynamic J-A model improved by waveform scale parameters and R-L type fractional derivatives","authors":"Long Chen, Zheyu Zhang, Ni An, Xin Wen, Tong Ben","doi":"10.1108/compel-01-2024-0027","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>The purpose of this study is to model the global dynamic hysteresis properties with an improved Jiles–Atherton (J-A) model through a unified set of parameters.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>First, the waveform scaling parameters <em>β</em>, <em>λ<sub>k</sub></em> and <em>λ<sub>c</sub></em> are used to improve the calculation accuracy of hysteresis loops at low magnetic flux density. Second, the Riemann–Liouville (R-L) type fractional derivatives technique is applied to modified static inverse J-A model to compute the dynamic magnetic field considering the skin effect in wideband frequency magnetization conditions.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The proposed model is identified and verified by modeling the hysteresis loops whose maximum magnetic flux densities vary from 0.3 to 1.4 T up to 800 Hz using B30P105 electrical steel. Compared with the conventional J-A model, the global simulation ability of the proposed dynamic model is much improved.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>Accurate modeling of the hysteresis properties of electrical steels is essential for analyzing the loss behavior of electrical equipment in finite element analysis (FEA). Nevertheless, the existing inverse Jiles–Atherton (J-A) model can only guarantee the simulation accuracy with higher magnetic flux densities, which cannot guarantee the analysis requirements of considering both low magnetic flux density and high magnetic flux density in FEA. This paper modifies the dynamic J-A model by introducing waveform scaling parameters and the R-L fractional derivative to improve the hysteresis loops’ simulation accuracy from low to high magnetic flux densities with the same set of parameters in a wide frequency range.</p><!--/ Abstract__block -->","PeriodicalId":501376,"journal":{"name":"COMPEL","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"COMPEL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/compel-01-2024-0027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose

The purpose of this study is to model the global dynamic hysteresis properties with an improved Jiles–Atherton (J-A) model through a unified set of parameters.

Design/methodology/approach

First, the waveform scaling parameters β, λk and λc are used to improve the calculation accuracy of hysteresis loops at low magnetic flux density. Second, the Riemann–Liouville (R-L) type fractional derivatives technique is applied to modified static inverse J-A model to compute the dynamic magnetic field considering the skin effect in wideband frequency magnetization conditions.

Findings

The proposed model is identified and verified by modeling the hysteresis loops whose maximum magnetic flux densities vary from 0.3 to 1.4 T up to 800 Hz using B30P105 electrical steel. Compared with the conventional J-A model, the global simulation ability of the proposed dynamic model is much improved.

Originality/value

Accurate modeling of the hysteresis properties of electrical steels is essential for analyzing the loss behavior of electrical equipment in finite element analysis (FEA). Nevertheless, the existing inverse Jiles–Atherton (J-A) model can only guarantee the simulation accuracy with higher magnetic flux densities, which cannot guarantee the analysis requirements of considering both low magnetic flux density and high magnetic flux density in FEA. This paper modifies the dynamic J-A model by introducing waveform scaling parameters and the R-L fractional derivative to improve the hysteresis loops’ simulation accuracy from low to high magnetic flux densities with the same set of parameters in a wide frequency range.

用波形比例参数和 R-L 型分数导数改进动态 J-A 模型
设计/方法/方法首先,使用波形缩放参数 β、λk 和 λc 来提高低磁通密度下磁滞回线的计算精度。其次,将黎曼-刘维尔(R-L)型分数导数技术应用于修正的静态逆 J-A 模型,以计算宽带频率磁化条件下考虑集肤效应的动态磁场。研究结果通过使用 B30P105 电工钢对最大磁通密度在 0.3 到 1.4 T 之间、频率高达 800 Hz 的磁滞回线进行建模,确定并验证了所提出的模型。与传统的 J-A 模型相比,所提出的动态模型的全局仿真能力大大提高。然而,现有的逆 Jiles-Atherton (J-A) 模型只能保证较高磁通密度下的模拟精度,无法保证有限元分析中同时考虑低磁通密度和高磁通密度的分析要求。本文通过引入波形缩放参数和 R-L 分数导数,对动态 J-A 模型进行了修改,从而提高了磁滞回线的仿真精度,即在较宽的频率范围内,使用同一组参数,从低磁通密度到高磁通密度进行仿真。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信