Synthesis, molecular docking, drug-likeness analysis, and ADMET prediction of nickel and zinc tetraphenyl-porphyrin complexes as possible antioxidant agents
{"title":"Synthesis, molecular docking, drug-likeness analysis, and ADMET prediction of nickel and zinc tetraphenyl-porphyrin complexes as possible antioxidant agents","authors":"Elhafnaoui Lanez, Lalmi Zerrouk, Lazhar Bechki, Touhami Lanez, Aicha Adaika, Nadjiba Zegheb, Kaouther Nesba","doi":"10.1002/jccs.202400167","DOIUrl":null,"url":null,"abstract":"<p>Nickel tetraphenyl-porphyrin (NiTPPH₂) and zinc tetra(4-methophenyl)-porphyrin (ZnTPPH₂(p-methyl)) were successfully synthesized and characterized using <sup>1</sup>H NMR spectroscopy. Their antioxidant activities and interactions with the superoxide anion radical (<span></span><math>\n <mrow>\n <msubsup>\n <mi>O</mi>\n <mn>2</mn>\n <msup>\n <mo>•</mo>\n <mo>_</mo>\n </msup>\n </msubsup>\n </mrow></math>) were evaluated using cyclic voltammetry. Remarkably, NiTPPH₂ displayed superior antioxidant activity with an IC<sub>50</sub> value of 54.57 μg mL<sup>−1</sup>, significantly outperforming α-tocopherol (IC<sub>50</sub> = 353.27 μg mL<sup>−1</sup>), indicating its potential as a potent antioxidant. Binding free energy calculations demonstrated that electrostatic interactions predominantly govern the binding, with values of −23.47 kJ mol<sup>−1</sup> for NiTPPH₂ and −22.50 kJ mol<sup>−1</sup> for ZnTPPH₂(p-methyl). These values suggest robust binding affinities with <span></span><math>\n <mrow>\n <msubsup>\n <mi>O</mi>\n <mn>2</mn>\n <msup>\n <mo>•</mo>\n <mo>_</mo>\n </msup>\n </msubsup>\n </mrow></math>. Quantum chemical parameters, obtained through density functional theory (DFT), showed a strong correlation with experimental results, validating the computational approach. Additionally, ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) and drug-likeness assessments, alongside molecular docking studies, highlighted favorable pharmacokinetic profiles and binding affinities. These findings underscore the potential of NiTPPH₂ and ZnTPPH₂(p-methyl) as promising candidates for antioxidant therapy, exhibiting drug-like properties and favorable pharmacokinetics. This research advances the understanding of these porphyrin derivatives and their application in the development of novel antioxidant therapeutics.</p>","PeriodicalId":17262,"journal":{"name":"Journal of The Chinese Chemical Society","volume":"71 10","pages":"1211-1229"},"PeriodicalIF":1.6000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Chinese Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jccs.202400167","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Nickel tetraphenyl-porphyrin (NiTPPH₂) and zinc tetra(4-methophenyl)-porphyrin (ZnTPPH₂(p-methyl)) were successfully synthesized and characterized using 1H NMR spectroscopy. Their antioxidant activities and interactions with the superoxide anion radical () were evaluated using cyclic voltammetry. Remarkably, NiTPPH₂ displayed superior antioxidant activity with an IC50 value of 54.57 μg mL−1, significantly outperforming α-tocopherol (IC50 = 353.27 μg mL−1), indicating its potential as a potent antioxidant. Binding free energy calculations demonstrated that electrostatic interactions predominantly govern the binding, with values of −23.47 kJ mol−1 for NiTPPH₂ and −22.50 kJ mol−1 for ZnTPPH₂(p-methyl). These values suggest robust binding affinities with . Quantum chemical parameters, obtained through density functional theory (DFT), showed a strong correlation with experimental results, validating the computational approach. Additionally, ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) and drug-likeness assessments, alongside molecular docking studies, highlighted favorable pharmacokinetic profiles and binding affinities. These findings underscore the potential of NiTPPH₂ and ZnTPPH₂(p-methyl) as promising candidates for antioxidant therapy, exhibiting drug-like properties and favorable pharmacokinetics. This research advances the understanding of these porphyrin derivatives and their application in the development of novel antioxidant therapeutics.
期刊介绍:
The Journal of the Chinese Chemical Society was founded by The Chemical Society Located in Taipei in 1954, and is the oldest general chemistry journal in Taiwan. It is strictly peer-reviewed and welcomes review articles, full papers, notes and communications written in English. The scope of the Journal of the Chinese Chemical Society covers all major areas of chemistry: organic chemistry, inorganic chemistry, analytical chemistry, biochemistry, physical chemistry, and materials science.