The molecular structure of an axle-less F1-ATPase

Emily J. Furlong, Ian-Blaine P. Reininger-Chatzigiannakis, Yi C. Zeng, Simon H. J. Brown, Meghna Sobti, Alastair G. Stewart
{"title":"The molecular structure of an axle-less F1-ATPase","authors":"Emily J. Furlong, Ian-Blaine P. Reininger-Chatzigiannakis, Yi C. Zeng, Simon H. J. Brown, Meghna Sobti, Alastair G. Stewart","doi":"10.1101/2024.08.08.607276","DOIUrl":null,"url":null,"abstract":"F<sub>1</sub>F<sub>o</sub> ATP synthase is a molecular rotary motor that can generate ATP using a transmembrane proton motive force. Isolated F<sub>1</sub>-ATPase catalytic cores can hydrolyse ATP, passing through a series of conformational states involving rotation of the central γ rotor subunit and the opening and closing of the catalytic β subunits. Cooperativity in F<sub>1</sub>-ATPase has long thought to be conferred through the γ subunit, with three key interaction sites between the γ and β subunits being identified. Single molecule studies have demonstrated that the F<sub>1</sub> complexes lacking the γ axle still “rotate” and hydrolyse ATP, but with less efficiency. We solved the cryogenic electron microscopy structure of an axle-less <em>Bacillus</em> sp. PS3 F<sub>1</sub>-ATPase. The unexpected binding-dwell conformation of the structure in combination with the observed lack of interactions between the axle-less γ and the open β subunit suggests that the complete γ subunit is important for coordinating efficient ATP binding of F<sub>1</sub>-ATPase.","PeriodicalId":501147,"journal":{"name":"bioRxiv - Biochemistry","volume":"80 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.08.607276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

F1Fo ATP synthase is a molecular rotary motor that can generate ATP using a transmembrane proton motive force. Isolated F1-ATPase catalytic cores can hydrolyse ATP, passing through a series of conformational states involving rotation of the central γ rotor subunit and the opening and closing of the catalytic β subunits. Cooperativity in F1-ATPase has long thought to be conferred through the γ subunit, with three key interaction sites between the γ and β subunits being identified. Single molecule studies have demonstrated that the F1 complexes lacking the γ axle still “rotate” and hydrolyse ATP, but with less efficiency. We solved the cryogenic electron microscopy structure of an axle-less Bacillus sp. PS3 F1-ATPase. The unexpected binding-dwell conformation of the structure in combination with the observed lack of interactions between the axle-less γ and the open β subunit suggests that the complete γ subunit is important for coordinating efficient ATP binding of F1-ATPase.
无轴 F1-ATP 酶的分子结构
F1Fo ATP 合酶是一种分子旋转马达,可利用跨膜质子动力产生 ATP。分离的 F1-ATP 酶催化核心可以水解 ATP,并通过一系列构象状态,包括中心 γ 转子亚基的旋转和催化 β 亚基的开合。长期以来,人们一直认为 F1-ATP 酶的协同作用是通过 γ 亚基实现的,并已发现 γ 和 β 亚基之间有三个关键的相互作用位点。单分子研究表明,缺少γ轴的F1复合物仍能 "旋转 "并水解ATP,但效率较低。我们解决了无轴芽孢杆菌 PS3 F1-ATP 酶的低温电子显微镜结构。该结构意想不到的结合-停留构象,以及观察到的无轴γ和开放β亚基之间缺乏相互作用的现象表明,完整的γ亚基对于协调F1-ATP酶有效的ATP结合非常重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信