An asymmetric nautilus-like HflK/C assembly controls FtsH proteolysis of membrane proteins

Alireza Ghanbarpour, Bertina Telusma, Barrett M. Powell, Jia Jia Zhang, Isabella Bolstad, Carolyn Vargas, Sandro Keller, Tania A. Baker, Robert T. Sauer, Joseph H. Davis
{"title":"An asymmetric nautilus-like HflK/C assembly controls FtsH proteolysis of membrane proteins","authors":"Alireza Ghanbarpour, Bertina Telusma, Barrett M. Powell, Jia Jia Zhang, Isabella Bolstad, Carolyn Vargas, Sandro Keller, Tania A. Baker, Robert T. Sauer, Joseph H. Davis","doi":"10.1101/2024.08.09.604662","DOIUrl":null,"url":null,"abstract":"FtsH, a AAA protease, associates with HflK/C subunits to form a megadalton complex that spans the inner membrane and extends into the periplasm of E. coli. How this complex and homologous assemblies in eukaryotic organelles recruit, extract, and degrade membrane-embedded substrates is unclear. Following overproduction of protein components, recent cryo-EM structures reveal symmetric HflK/C cages surrounding FtsH in a manner proposed to inhibit degradation of membrane-embedded substrates. Here, we present structures of native complexes in which HflK/C instead forms an asymmetric nautilus-like assembly with an entryway for membrane-embedded substrates to reach and be engaged by FtsH. Consistent with this nautilus-like structure, proteomic assays suggest that HflK/C enhances FtsH degradation of certain membrane-embedded substrates. Membrane curvature in our FtsH*HflK/C complexes is opposite that of surrounding membrane regions, a property that correlates with lipid-scramblase activity and possibly with FtsH's function in the degradation of membrane-embedded proteins.","PeriodicalId":501147,"journal":{"name":"bioRxiv - Biochemistry","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.09.604662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

FtsH, a AAA protease, associates with HflK/C subunits to form a megadalton complex that spans the inner membrane and extends into the periplasm of E. coli. How this complex and homologous assemblies in eukaryotic organelles recruit, extract, and degrade membrane-embedded substrates is unclear. Following overproduction of protein components, recent cryo-EM structures reveal symmetric HflK/C cages surrounding FtsH in a manner proposed to inhibit degradation of membrane-embedded substrates. Here, we present structures of native complexes in which HflK/C instead forms an asymmetric nautilus-like assembly with an entryway for membrane-embedded substrates to reach and be engaged by FtsH. Consistent with this nautilus-like structure, proteomic assays suggest that HflK/C enhances FtsH degradation of certain membrane-embedded substrates. Membrane curvature in our FtsH*HflK/C complexes is opposite that of surrounding membrane regions, a property that correlates with lipid-scramblase activity and possibly with FtsH's function in the degradation of membrane-embedded proteins.
类似鹦鹉螺的不对称 HflK/C 组装控制着膜蛋白的 FtsH 蛋白水解作用
FtsH是一种AAA蛋白酶,它与HflK/C亚基结合形成一个跨越内膜并延伸至大肠杆菌外质的巨核复合体。目前还不清楚这种复合体和真核细胞器中的同源组装体是如何招募、提取和降解膜包底物的。随着蛋白质成分的过度生产,最近的低温电子显微镜结构显示,对称的 HflK/C 笼以抑制膜嵌入底物降解的方式包围了 FtsH。在这里,我们展示了原生复合体的结构,在这种复合体中,HflK/C 形成了一个不对称的鹦鹉螺状组合体,其中有一个入口供膜埋底物到达并被 FtsH 激活。与这种鹦鹉螺状结构相一致的是,蛋白质组测定表明,HflK/C 能增强 FtsH 对某些膜嵌入底物的降解作用。在我们的 FtsH*HflK/C 复合物中,膜曲率与周围膜区域的曲率相反,这种特性与脂质鳞片酶的活性有关,也可能与 FtsH 降解膜嵌入蛋白的功能有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信