{"title":"Reaction intermediates and products characterisation of NH3 in desulphurisation with activated coke","authors":"Wei-li Zhang, Meng Wang, Wen-zhe Si, Jun-hua Li","doi":"10.1007/s42243-024-01241-2","DOIUrl":null,"url":null,"abstract":"<p>The sulphate is an important factor restricting the efficient and stable operation of the activated coke (AC) flue gas purification system. The simulation experiments and in situ infrared tests of AC taken from desorption tower of the AC flue gas purification system were carried out to first calibrate the thermal desorption characteristics of adsorbed NH<sub>3</sub> and sulphate and explore the reaction behaviour of NH<sub>3</sub> with SO<sub>2</sub> and H<sub>2</sub>SO<sub>4</sub>. On this basis, some advice for optimising the sulphate generation was put forward to improve the purification efficiency of the AC system. The results show that the temperatures of the desorption of adsorbed NH<sub>3</sub>, the decomposition of (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> and NH<sub>4</sub>HSO<sub>4</sub> are 224, 276 and 319 °C, respectively, which lays the foundation for the quantitative analysis of sulphate on AC. Regardless of the NH<sub>3</sub> amount, only a small portion of H<sub>2</sub>SO<sub>4</sub> is converted to sulphate, as the H<sub>2</sub>SO<sub>4</sub> deposited in AC pores or agglomerated together could not come into contact with NH<sub>3</sub>. The final reaction product of NH<sub>3</sub> and SO<sub>2</sub> is mainly (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> which is continuously generated because the newly generated H<sub>2</sub>SO<sub>4</sub> is continually exposed to NH<sub>3</sub>, if NH<sub>3</sub> is enough. The reaction of NH<sub>3</sub> with H<sub>2</sub>SO<sub>4</sub> takes precedence over with NH<sub>4</sub>HSO<sub>4</sub>. In the initial stages in which H<sub>2</sub>SO<sub>4</sub> is exposed to NH<sub>3</sub>, the product is essentially all NH<sub>4</sub>HSO<sub>4</sub> as intermediate. Then, it is further converted to (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> whose amount reaches equilibrium when the accessible H<sub>2</sub>SO<sub>4</sub> is exhausted. All the NH<sub>3</sub> adsorbed on AC entering the desulphurisation tower generates NH<sub>4</sub>HSO<sub>4</sub>, but the amount is limited. The remaining SO<sub>2</sub> entering the denitrification tower mainly generates (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>; thus, limiting the remaining SO<sub>2</sub> amount is necessary to guarantee denitrification efficiency. When the NH<sub>3</sub> injection is changed to the desulphurisation tower, the initial NH<sub>3</sub> injection rate can be increased to complete the conversion of accessible H<sub>2</sub>SO<sub>4</sub> as soon as possible in order to obtain higher denitrification efficiency.</p>","PeriodicalId":16151,"journal":{"name":"Journal of Iron and Steel Research International","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Iron and Steel Research International","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s42243-024-01241-2","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The sulphate is an important factor restricting the efficient and stable operation of the activated coke (AC) flue gas purification system. The simulation experiments and in situ infrared tests of AC taken from desorption tower of the AC flue gas purification system were carried out to first calibrate the thermal desorption characteristics of adsorbed NH3 and sulphate and explore the reaction behaviour of NH3 with SO2 and H2SO4. On this basis, some advice for optimising the sulphate generation was put forward to improve the purification efficiency of the AC system. The results show that the temperatures of the desorption of adsorbed NH3, the decomposition of (NH4)2SO4 and NH4HSO4 are 224, 276 and 319 °C, respectively, which lays the foundation for the quantitative analysis of sulphate on AC. Regardless of the NH3 amount, only a small portion of H2SO4 is converted to sulphate, as the H2SO4 deposited in AC pores or agglomerated together could not come into contact with NH3. The final reaction product of NH3 and SO2 is mainly (NH4)2SO4 which is continuously generated because the newly generated H2SO4 is continually exposed to NH3, if NH3 is enough. The reaction of NH3 with H2SO4 takes precedence over with NH4HSO4. In the initial stages in which H2SO4 is exposed to NH3, the product is essentially all NH4HSO4 as intermediate. Then, it is further converted to (NH4)2SO4 whose amount reaches equilibrium when the accessible H2SO4 is exhausted. All the NH3 adsorbed on AC entering the desulphurisation tower generates NH4HSO4, but the amount is limited. The remaining SO2 entering the denitrification tower mainly generates (NH4)2SO4; thus, limiting the remaining SO2 amount is necessary to guarantee denitrification efficiency. When the NH3 injection is changed to the desulphurisation tower, the initial NH3 injection rate can be increased to complete the conversion of accessible H2SO4 as soon as possible in order to obtain higher denitrification efficiency.
期刊介绍:
Publishes critically reviewed original research of archival significance
Covers hydrometallurgy, pyrometallurgy, electrometallurgy, transport phenomena, process control, physical chemistry, solidification, mechanical working, solid state reactions, materials processing, and more
Includes welding & joining, surface treatment, mathematical modeling, corrosion, wear and abrasion
Journal of Iron and Steel Research International publishes original papers and occasional invited reviews on aspects of research and technology in the process metallurgy and metallic materials. Coverage emphasizes the relationships among the processing, structure and properties of metals, including advanced steel materials, superalloy, intermetallics, metallic functional materials, powder metallurgy, structural titanium alloy, composite steel materials, high entropy alloy, amorphous alloys, metallic nanomaterials, etc..