Ting Wang, Bi-jun Hua, Xiang-jun Liu, Pei-hong Yang, Xiao-xia Shi, Ji-chun Yang, Li Zhou, Chang-qiao Yang
{"title":"Mechanism analysis of pitting induced by Al2O3 inclusions: insight from simulation calculation","authors":"Ting Wang, Bi-jun Hua, Xiang-jun Liu, Pei-hong Yang, Xiao-xia Shi, Ji-chun Yang, Li Zhou, Chang-qiao Yang","doi":"10.1007/s42243-024-01298-z","DOIUrl":null,"url":null,"abstract":"<p>The micro-area characterization experiments like scanning Kelvin probe force microscope (SKPFM) and Kernel average misorientation have the defects of complex sample preparation and occasional errors in test results, which makes it impossible to accurately and quickly analyze the pitting behavior induced by inclusions in some cases, prompting attempts to turn to simulation calculation research. The method of calculating band structure and work function can be used to replace current-sensing atomic force microscopy and SKPFM to detect the potential and conductivity of the sample. The band structure results show that Al<sub>2</sub>O<sub>3</sub> inclusion is an insulator and non-conductive, and it will not form galvanic corrosion with the matrix. Al<sub>2</sub>O<sub>3</sub> inclusion does not dissolve because its work function is higher than that of the matrix. Moreover, the stress concentration of the matrix around the inclusion can be characterized by first-principles calculation coupled with finite element simulation. The results show that the stress concentration degree of the matrix around Al<sub>2</sub>O<sub>3</sub> inclusion is serious, and the galvanic corrosion is formed between the high and the low stress concentration areas, which can be used to explain the reason of the pitting induced by Al<sub>2</sub>O<sub>3</sub> inclusions.</p>","PeriodicalId":16151,"journal":{"name":"Journal of Iron and Steel Research International","volume":"30 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Iron and Steel Research International","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s42243-024-01298-z","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The micro-area characterization experiments like scanning Kelvin probe force microscope (SKPFM) and Kernel average misorientation have the defects of complex sample preparation and occasional errors in test results, which makes it impossible to accurately and quickly analyze the pitting behavior induced by inclusions in some cases, prompting attempts to turn to simulation calculation research. The method of calculating band structure and work function can be used to replace current-sensing atomic force microscopy and SKPFM to detect the potential and conductivity of the sample. The band structure results show that Al2O3 inclusion is an insulator and non-conductive, and it will not form galvanic corrosion with the matrix. Al2O3 inclusion does not dissolve because its work function is higher than that of the matrix. Moreover, the stress concentration of the matrix around the inclusion can be characterized by first-principles calculation coupled with finite element simulation. The results show that the stress concentration degree of the matrix around Al2O3 inclusion is serious, and the galvanic corrosion is formed between the high and the low stress concentration areas, which can be used to explain the reason of the pitting induced by Al2O3 inclusions.
期刊介绍:
Publishes critically reviewed original research of archival significance
Covers hydrometallurgy, pyrometallurgy, electrometallurgy, transport phenomena, process control, physical chemistry, solidification, mechanical working, solid state reactions, materials processing, and more
Includes welding & joining, surface treatment, mathematical modeling, corrosion, wear and abrasion
Journal of Iron and Steel Research International publishes original papers and occasional invited reviews on aspects of research and technology in the process metallurgy and metallic materials. Coverage emphasizes the relationships among the processing, structure and properties of metals, including advanced steel materials, superalloy, intermetallics, metallic functional materials, powder metallurgy, structural titanium alloy, composite steel materials, high entropy alloy, amorphous alloys, metallic nanomaterials, etc..