Sharp permutation groups whose point stabilizers are Frobenius groups with cyclic Frobenius kernel

Pub Date : 2024-08-06 DOI:10.1080/00927872.2024.2377806
Blake Norman
{"title":"Sharp permutation groups whose point stabilizers are Frobenius groups with cyclic Frobenius kernel","authors":"Blake Norman","doi":"10.1080/00927872.2024.2377806","DOIUrl":null,"url":null,"abstract":"Let (G,X) be a transitive non-geometric sharp permutation group of type {0,k} and let x∈X. We prove that if the point stabilizer Gx is a Frobenius group with cyclic Frobenius kernel, then Gx≅AGL(1,...","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/00927872.2024.2377806","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let (G,X) be a transitive non-geometric sharp permutation group of type {0,k} and let x∈X. We prove that if the point stabilizer Gx is a Frobenius group with cyclic Frobenius kernel, then Gx≅AGL(1,...
分享
查看原文
其点稳定子为具有循环弗罗贝尼斯核的弗罗贝尼斯群的尖顶置换群
设 (G,X) 是{0,k}类型的传递非几何尖锐置换群,并设 x∈X.我们证明,如果点稳定器 Gx 是一个具有循环弗罗贝尼斯核的弗罗贝尼斯群,那么 Gx≅AGL(1,...
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信