Structure-aware sign language recognition with spatial–temporal scene graph

IF 7.4 1区 管理学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Shiquan Lin , Zhengye Xiao , Lixin Wang , Xiuan Wan , Lan Ni , Yuchun Fang
{"title":"Structure-aware sign language recognition with spatial–temporal scene graph","authors":"Shiquan Lin ,&nbsp;Zhengye Xiao ,&nbsp;Lixin Wang ,&nbsp;Xiuan Wan ,&nbsp;Lan Ni ,&nbsp;Yuchun Fang","doi":"10.1016/j.ipm.2024.103850","DOIUrl":null,"url":null,"abstract":"<div><p>Continuous sign language recognition (CSLR) is essential for the social participation of deaf individuals. The structural information of sign language motion units plays a crucial role in semantic representation. However, most existing CSLR methods treat motion units as a whole appearance in the video sequence, neglecting the exploitation and explanation of structural information in the models. This paper proposes a Structure-Aware Graph Convolutional Neural Network (SA-GNN) model for CSLR. This model constructs a spatial–temporal scene graph, explicitly capturing motion units’ spatial structure and temporal variation. Furthermore, to effectively train the SA-GNN, we propose an adaptive bootstrap strategy that enhances weak supervision using dense pseudo labels. This strategy incorporates a confidence cross-entropy loss to adjust the distribution of pseudo labels adaptively. Extensive experiments validate the effectiveness of our proposed method, achieving competitive results on popular CSLR datasets.</p></div>","PeriodicalId":50365,"journal":{"name":"Information Processing & Management","volume":null,"pages":null},"PeriodicalIF":7.4000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing & Management","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306457324002097","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Continuous sign language recognition (CSLR) is essential for the social participation of deaf individuals. The structural information of sign language motion units plays a crucial role in semantic representation. However, most existing CSLR methods treat motion units as a whole appearance in the video sequence, neglecting the exploitation and explanation of structural information in the models. This paper proposes a Structure-Aware Graph Convolutional Neural Network (SA-GNN) model for CSLR. This model constructs a spatial–temporal scene graph, explicitly capturing motion units’ spatial structure and temporal variation. Furthermore, to effectively train the SA-GNN, we propose an adaptive bootstrap strategy that enhances weak supervision using dense pseudo labels. This strategy incorporates a confidence cross-entropy loss to adjust the distribution of pseudo labels adaptively. Extensive experiments validate the effectiveness of our proposed method, achieving competitive results on popular CSLR datasets.

利用时空场景图进行结构感知手语识别
连续手语识别(CSLR)对于聋人的社会参与至关重要。手语运动单元的结构信息在语义表征中起着至关重要的作用。然而,现有的 CSLR 方法大多将运动单元作为视频序列中的整体外观来处理,忽视了模型中结构信息的利用和解释。本文提出了一种用于 CSLR 的结构感知图卷积神经网络(SA-GNN)模型。该模型构建了一个时空场景图,明确捕捉运动单元的空间结构和时间变化。此外,为了有效训练 SA-GNN,我们提出了一种自适应引导策略,利用密集的伪标签增强弱监督。该策略结合了置信度交叉熵损失,可以自适应地调整伪标签的分布。广泛的实验验证了我们提出的方法的有效性,在流行的 CSLR 数据集上取得了具有竞争力的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Information Processing & Management
Information Processing & Management 工程技术-计算机:信息系统
CiteScore
17.00
自引率
11.60%
发文量
276
审稿时长
39 days
期刊介绍: Information Processing and Management is dedicated to publishing cutting-edge original research at the convergence of computing and information science. Our scope encompasses theory, methods, and applications across various domains, including advertising, business, health, information science, information technology marketing, and social computing. We aim to cater to the interests of both primary researchers and practitioners by offering an effective platform for the timely dissemination of advanced and topical issues in this interdisciplinary field. The journal places particular emphasis on original research articles, research survey articles, research method articles, and articles addressing critical applications of research. Join us in advancing knowledge and innovation at the intersection of computing and information science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信