Real-time modelling of the SARS-CoV-2 pandemic in England 2020-2023: a challenging data integration

Paul J Birrell, Joshua Blake, Joel Kandiah, Angelos Alexopoulos, Edwin van Leeuwen, Koen Pouwels, Sanmitra Ghosh, Colin Starr, Ann Sarah Walker, Thomas A House, Nigel Gay, Thomas Finnie, Nick Gent, André Charlett, Daniela De Angelis
{"title":"Real-time modelling of the SARS-CoV-2 pandemic in England 2020-2023: a challenging data integration","authors":"Paul J Birrell, Joshua Blake, Joel Kandiah, Angelos Alexopoulos, Edwin van Leeuwen, Koen Pouwels, Sanmitra Ghosh, Colin Starr, Ann Sarah Walker, Thomas A House, Nigel Gay, Thomas Finnie, Nick Gent, André Charlett, Daniela De Angelis","doi":"arxiv-2408.04178","DOIUrl":null,"url":null,"abstract":"A central pillar of the UK's response to the SARS-CoV-2 pandemic was the\nprovision of up-to-the moment nowcasts and short term projections to monitor\ncurrent trends in transmission and associated healthcare burden. Here we\npresent a detailed deconstruction of one of the 'real-time' models that was key\ncontributor to this response, focussing on the model adaptations required over\nthree pandemic years characterised by the imposition of lockdowns, mass\nvaccination campaigns and the emergence of new pandemic strains. The Bayesian\nmodel integrates an array of surveillance and other data sources including a\nnovel approach to incorporating prevalence estimates from an unprecedented\nlarge-scale household survey. We present a full range of estimates of the\nepidemic history and the changing severity of the infection, quantify the\nimpact of the vaccination programme and deconstruct contributing factors to the\nreproduction number. We further investigate the sensitivity of model-derived\ninsights to the availability and timeliness of prevalence data, identifying its\nimportance to the production of robust estimates.","PeriodicalId":501172,"journal":{"name":"arXiv - STAT - Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A central pillar of the UK's response to the SARS-CoV-2 pandemic was the provision of up-to-the moment nowcasts and short term projections to monitor current trends in transmission and associated healthcare burden. Here we present a detailed deconstruction of one of the 'real-time' models that was key contributor to this response, focussing on the model adaptations required over three pandemic years characterised by the imposition of lockdowns, mass vaccination campaigns and the emergence of new pandemic strains. The Bayesian model integrates an array of surveillance and other data sources including a novel approach to incorporating prevalence estimates from an unprecedented large-scale household survey. We present a full range of estimates of the epidemic history and the changing severity of the infection, quantify the impact of the vaccination programme and deconstruct contributing factors to the reproduction number. We further investigate the sensitivity of model-derived insights to the availability and timeliness of prevalence data, identifying its importance to the production of robust estimates.
2020-2023 年英格兰 SARS-CoV-2 大流行的实时建模:具有挑战性的数据整合
英国应对 SARS-CoV-2 大流行的一个核心支柱是提供最新的即时预测和短期预测,以监控当前的传播趋势和相关的医疗负担。在此,我们将对其中一个 "实时 "模型进行详细解构,该模型是这一应对措施的主要贡献者,重点是在以实施封锁、大规模疫苗接种运动和出现新的流行病毒株为特征的三年大流行期间所需的模型调整。贝叶斯模型整合了一系列监测数据和其他数据源,包括一种将前所未有的大规模家庭调查得出的流行率估计值纳入其中的新方法。我们对疫情历史和不断变化的感染严重程度进行了全方位的估计,对疫苗接种计划的影响进行了量化,并对导致疫苗生产数量的因素进行了解构。我们进一步研究了模型得出的观点对流行率数据的可用性和及时性的敏感性,确定了其对得出可靠估计值的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信