{"title":"On Laguerre-Sobolev matrix orthogonal polynomials","authors":"Edinson Fuentes, Luis E. Garza, Martha L. Saiz","doi":"10.1515/math-2024-0029","DOIUrl":null,"url":null,"abstract":"In this manuscript, we study some algebraic and differential properties of matrix orthogonal polynomials with respect to the Laguerre-Sobolev right sesquilinear form defined by <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0029_eq_001.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"> <m:msub> <m:mrow> <m:mrow> <m:mo>⟨</m:mo> <m:mrow> <m:mi>p</m:mi> <m:mo>,</m:mo> <m:mi>q</m:mi> </m:mrow> <m:mo>⟩</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mi mathvariant=\"bold\">S</m:mi> </m:mrow> </m:msub> <m:mo>≔</m:mo> <m:munderover> <m:mrow> <m:mrow> <m:mo>∫</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> <m:mrow> <m:mi>∞</m:mi> </m:mrow> </m:munderover> <m:msup> <m:mrow> <m:mi>p</m:mi> </m:mrow> <m:mrow> <m:mo>*</m:mo> </m:mrow> </m:msup> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:msubsup> <m:mrow> <m:mi mathvariant=\"bold\">W</m:mi> </m:mrow> <m:mrow> <m:mi mathvariant=\"bold\">L</m:mi> </m:mrow> <m:mrow> <m:mi mathvariant=\"bold\">A</m:mi> </m:mrow> </m:msubsup> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mi>q</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mi mathvariant=\"normal\">d</m:mi> <m:mi>x</m:mi> <m:mo>+</m:mo> <m:mi mathvariant=\"bold\">M</m:mi> <m:munderover> <m:mrow> <m:mrow> <m:mo>∫</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> <m:mrow> <m:mi>∞</m:mi> </m:mrow> </m:munderover> <m:msup> <m:mrow> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>p</m:mi> <m:mo accent=\"false\">′</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mo>*</m:mo> </m:mrow> </m:msup> <m:mi mathvariant=\"bold\">W</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mi>q</m:mi> <m:mo accent=\"false\">′</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mi mathvariant=\"normal\">d</m:mi> <m:mi>x</m:mi> <m:mo>,</m:mo> </m:math> <jats:tex-math>{\\langle p,q\\rangle }_{{\\bf{S}}}:= \\underset{0}{\\overset{\\infty }{\\int }}{p}^{* }\\left(x){{\\bf{W}}}_{{\\bf{L}}}^{{\\bf{A}}}\\left(x)q\\left(x){\\rm{d}}x+{\\bf{M}}\\underset{0}{\\overset{\\infty }{\\int }}{(p^{\\prime} \\left(x))}^{* }{\\bf{W}}\\left(x)q^{\\prime} \\left(x){\\rm{d}}x,</jats:tex-math> </jats:alternatives> </jats:disp-formula> where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0029_eq_002.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msubsup> <m:mrow> <m:mi mathvariant=\"bold\">W</m:mi> </m:mrow> <m:mrow> <m:mi mathvariant=\"bold\">L</m:mi> </m:mrow> <m:mrow> <m:mi mathvariant=\"bold\">A</m:mi> </m:mrow> </m:msubsup> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:msup> <m:mrow> <m:mi>e</m:mi> </m:mrow> <m:mrow> <m:mo>−</m:mo> <m:mi>λ</m:mi> <m:mi>x</m:mi> </m:mrow> </m:msup> <m:msup> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mi mathvariant=\"bold\">A</m:mi> </m:mrow> </m:msup> </m:math> <jats:tex-math>{{\\bf{W}}}_{{\\bf{L}}}^{{\\bf{A}}}\\left(x)={e}^{-\\lambda x}{x}^{{\\bf{A}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the Laguerre matrix weight, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0029_eq_003.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"bold\">W</m:mi> </m:math> <jats:tex-math>{\\bf{W}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is some matrix weight, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0029_eq_004.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>p</m:mi> </m:math> <jats:tex-math>p</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0029_eq_005.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>q</m:mi> </m:math> <jats:tex-math>q</jats:tex-math> </jats:alternatives> </jats:inline-formula> are the matrix polynomials, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0029_eq_006.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"bold\">M</m:mi> </m:math> <jats:tex-math>{\\bf{M}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0029_eq_007.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"bold\">A</m:mi> </m:math> <jats:tex-math>{\\bf{A}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> are the matrices such that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0029_eq_008.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"bold\">M</m:mi> </m:math> <jats:tex-math>{\\bf{M}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is non-singular and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0029_eq_009.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"bold\">A</m:mi> </m:math> <jats:tex-math>{\\bf{A}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> satisfies a spectral condition, and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0029_eq_010.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>λ</m:mi> </m:math> <jats:tex-math>\\lambda </jats:tex-math> </jats:alternatives> </jats:inline-formula> is a complex number with positive real part.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/math-2024-0029","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this manuscript, we study some algebraic and differential properties of matrix orthogonal polynomials with respect to the Laguerre-Sobolev right sesquilinear form defined by ⟨p,q⟩S≔∫0∞p*(x)WLA(x)q(x)dx+M∫0∞(p′(x))*W(x)q′(x)dx,{\langle p,q\rangle }_{{\bf{S}}}:= \underset{0}{\overset{\infty }{\int }}{p}^{* }\left(x){{\bf{W}}}_{{\bf{L}}}^{{\bf{A}}}\left(x)q\left(x){\rm{d}}x+{\bf{M}}\underset{0}{\overset{\infty }{\int }}{(p^{\prime} \left(x))}^{* }{\bf{W}}\left(x)q^{\prime} \left(x){\rm{d}}x, where WLA(x)=e−λxxA{{\bf{W}}}_{{\bf{L}}}^{{\bf{A}}}\left(x)={e}^{-\lambda x}{x}^{{\bf{A}}} is the Laguerre matrix weight, W{\bf{W}} is some matrix weight, pp and qq are the matrix polynomials, M{\bf{M}} and A{\bf{A}} are the matrices such that M{\bf{M}} is non-singular and A{\bf{A}} satisfies a spectral condition, and λ\lambda is a complex number with positive real part.
在本手稿中,我们研究了矩阵正交多项式的一些代数和微分性质,这些矩阵正交多项式与由 ⟨ p , q ⟩ S ≔ ∫ 0 ∞ p * ( x ) W L A ( x ) q ( x ) d x + M ∫ 0 ∞ ( p ′ ( x ) ) 定义的 Laguerre-Sobolev 右倍线性形式有关。 * W ( x ) q ′ ( x ) d x , {\langle p,q\rangle }_{{\bf{S}}}:= \underset{0}{\overset{\infty }{\int }}{p}^{* }\left(x){{\bf{W}}}_{{\bf{L}}}^{{\bf{A}}}\left(x)q\left(x){\rm{d}}x+{\bf{M}}\underset{0}{\overset{\infty}{int }}{(p^{\prime} \left(x))}^{* }{\bf{W}}\left(x)q^{\prime} \left(x){\rm{d}}x、 其中 W L A ( x ) = e - λ x x A {{\bf{W}}}_{{\bf{L}}}^{\bf{A}}}\left(x)={e}^{-\lambda x}{x}^{{\bf{A}}} 是拉盖尔矩阵权重、 W {\bf{W}} 是某个矩阵权重,p p 和 q q 是矩阵多项式,M {\bf{M}} 和 A {\bf{A}} 是矩阵,使得 M {\bf{M}} 是非奇异矩阵,A {\bf{A}} 满足谱条件,λ \lambda 是实部为正的复数。
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.