On Laguerre-Sobolev matrix orthogonal polynomials
IF 1
4区 数学
Q1 MATHEMATICS
Edinson Fuentes, Luis E. Garza, Martha L. Saiz
求助PDF
{"title":"On Laguerre-Sobolev matrix orthogonal polynomials","authors":"Edinson Fuentes, Luis E. Garza, Martha L. Saiz","doi":"10.1515/math-2024-0029","DOIUrl":null,"url":null,"abstract":"In this manuscript, we study some algebraic and differential properties of matrix orthogonal polynomials with respect to the Laguerre-Sobolev right sesquilinear form defined by <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0029_eq_001.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"> <m:msub> <m:mrow> <m:mrow> <m:mo>⟨</m:mo> <m:mrow> <m:mi>p</m:mi> <m:mo>,</m:mo> <m:mi>q</m:mi> </m:mrow> <m:mo>⟩</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mi mathvariant=\"bold\">S</m:mi> </m:mrow> </m:msub> <m:mo>≔</m:mo> <m:munderover> <m:mrow> <m:mrow> <m:mo>∫</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> <m:mrow> <m:mi>∞</m:mi> </m:mrow> </m:munderover> <m:msup> <m:mrow> <m:mi>p</m:mi> </m:mrow> <m:mrow> <m:mo>*</m:mo> </m:mrow> </m:msup> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:msubsup> <m:mrow> <m:mi mathvariant=\"bold\">W</m:mi> </m:mrow> <m:mrow> <m:mi mathvariant=\"bold\">L</m:mi> </m:mrow> <m:mrow> <m:mi mathvariant=\"bold\">A</m:mi> </m:mrow> </m:msubsup> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mi>q</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mi mathvariant=\"normal\">d</m:mi> <m:mi>x</m:mi> <m:mo>+</m:mo> <m:mi mathvariant=\"bold\">M</m:mi> <m:munderover> <m:mrow> <m:mrow> <m:mo>∫</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> <m:mrow> <m:mi>∞</m:mi> </m:mrow> </m:munderover> <m:msup> <m:mrow> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>p</m:mi> <m:mo accent=\"false\">′</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mo>*</m:mo> </m:mrow> </m:msup> <m:mi mathvariant=\"bold\">W</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mi>q</m:mi> <m:mo accent=\"false\">′</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mi mathvariant=\"normal\">d</m:mi> <m:mi>x</m:mi> <m:mo>,</m:mo> </m:math> <jats:tex-math>{\\langle p,q\\rangle }_{{\\bf{S}}}:= \\underset{0}{\\overset{\\infty }{\\int }}{p}^{* }\\left(x){{\\bf{W}}}_{{\\bf{L}}}^{{\\bf{A}}}\\left(x)q\\left(x){\\rm{d}}x+{\\bf{M}}\\underset{0}{\\overset{\\infty }{\\int }}{(p^{\\prime} \\left(x))}^{* }{\\bf{W}}\\left(x)q^{\\prime} \\left(x){\\rm{d}}x,</jats:tex-math> </jats:alternatives> </jats:disp-formula> where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0029_eq_002.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msubsup> <m:mrow> <m:mi mathvariant=\"bold\">W</m:mi> </m:mrow> <m:mrow> <m:mi mathvariant=\"bold\">L</m:mi> </m:mrow> <m:mrow> <m:mi mathvariant=\"bold\">A</m:mi> </m:mrow> </m:msubsup> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:msup> <m:mrow> <m:mi>e</m:mi> </m:mrow> <m:mrow> <m:mo>−</m:mo> <m:mi>λ</m:mi> <m:mi>x</m:mi> </m:mrow> </m:msup> <m:msup> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mi mathvariant=\"bold\">A</m:mi> </m:mrow> </m:msup> </m:math> <jats:tex-math>{{\\bf{W}}}_{{\\bf{L}}}^{{\\bf{A}}}\\left(x)={e}^{-\\lambda x}{x}^{{\\bf{A}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the Laguerre matrix weight, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0029_eq_003.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"bold\">W</m:mi> </m:math> <jats:tex-math>{\\bf{W}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is some matrix weight, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0029_eq_004.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>p</m:mi> </m:math> <jats:tex-math>p</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0029_eq_005.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>q</m:mi> </m:math> <jats:tex-math>q</jats:tex-math> </jats:alternatives> </jats:inline-formula> are the matrix polynomials, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0029_eq_006.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"bold\">M</m:mi> </m:math> <jats:tex-math>{\\bf{M}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0029_eq_007.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"bold\">A</m:mi> </m:math> <jats:tex-math>{\\bf{A}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> are the matrices such that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0029_eq_008.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"bold\">M</m:mi> </m:math> <jats:tex-math>{\\bf{M}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is non-singular and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0029_eq_009.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"bold\">A</m:mi> </m:math> <jats:tex-math>{\\bf{A}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> satisfies a spectral condition, and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0029_eq_010.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>λ</m:mi> </m:math> <jats:tex-math>\\lambda </jats:tex-math> </jats:alternatives> </jats:inline-formula> is a complex number with positive real part.","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":"6 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/math-2024-0029","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用
Abstract
In this manuscript, we study some algebraic and differential properties of matrix orthogonal polynomials with respect to the Laguerre-Sobolev right sesquilinear form defined by ⟨ p , q ⟩ S ≔ ∫ 0 ∞ p * ( x ) W L A ( x ) q ( x ) d x + M ∫ 0 ∞ ( p ′ ( x ) ) * W ( x ) q ′ ( x ) d x , {\langle p,q\rangle }_{{\bf{S}}}:= \underset{0}{\overset{\infty }{\int }}{p}^{* }\left(x){{\bf{W}}}_{{\bf{L}}}^{{\bf{A}}}\left(x)q\left(x){\rm{d}}x+{\bf{M}}\underset{0}{\overset{\infty }{\int }}{(p^{\prime} \left(x))}^{* }{\bf{W}}\left(x)q^{\prime} \left(x){\rm{d}}x, where W L A ( x ) = e − λ x x A {{\bf{W}}}_{{\bf{L}}}^{{\bf{A}}}\left(x)={e}^{-\lambda x}{x}^{{\bf{A}}} is the Laguerre matrix weight, W {\bf{W}} is some matrix weight, p p and q q are the matrix polynomials, M {\bf{M}} and A {\bf{A}} are the matrices such that M {\bf{M}} is non-singular and A {\bf{A}} satisfies a spectral condition, and λ \lambda is a complex number with positive real part.
关于 Laguerre-Sobolev 矩阵正交多项式
在本手稿中,我们研究了矩阵正交多项式的一些代数和微分性质,这些矩阵正交多项式与由 ⟨ p , q ⟩ S ≔ ∫ 0 ∞ p * ( x ) W L A ( x ) q ( x ) d x + M ∫ 0 ∞ ( p ′ ( x ) ) 定义的 Laguerre-Sobolev 右倍线性形式有关。 * W ( x ) q ′ ( x ) d x , {\langle p,q\rangle }_{{\bf{S}}}:= \underset{0}{\overset{\infty }{\int }}{p}^{* }\left(x){{\bf{W}}}_{{\bf{L}}}^{{\bf{A}}}\left(x)q\left(x){\rm{d}}x+{\bf{M}}\underset{0}{\overset{\infty}{int }}{(p^{\prime} \left(x))}^{* }{\bf{W}}\left(x)q^{\prime} \left(x){\rm{d}}x、 其中 W L A ( x ) = e - λ x x A {{\bf{W}}}_{{\bf{L}}}^{\bf{A}}}\left(x)={e}^{-\lambda x}{x}^{{\bf{A}}} 是拉盖尔矩阵权重、 W {\bf{W}} 是某个矩阵权重,p p 和 q q 是矩阵多项式,M {\bf{M}} 和 A {\bf{A}} 是矩阵,使得 M {\bf{M}} 是非奇异矩阵,A {\bf{A}} 满足谱条件,λ \lambda 是实部为正的复数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
来源期刊
期刊介绍:
Open Mathematics - formerly Central European Journal of Mathematics
Open Mathematics is a fully peer-reviewed, open access, electronic journal that publishes significant, original and relevant works in all areas of mathematics. The journal provides the readers with free, instant, and permanent access to all content worldwide; and the authors with extensive promotion of published articles, long-time preservation, language-correction services, no space constraints and immediate publication.
Open Mathematics is listed in Thomson Reuters - Current Contents/Physical, Chemical and Earth Sciences. Our standard policy requires each paper to be reviewed by at least two Referees and the peer-review process is single-blind.
Aims and Scope
The journal aims at presenting high-impact and relevant research on topics across the full span of mathematics. Coverage includes: