On Laguerre-Sobolev matrix orthogonal polynomials

IF 1 4区 数学 Q1 MATHEMATICS
Edinson Fuentes, Luis E. Garza, Martha L. Saiz
{"title":"On Laguerre-Sobolev matrix orthogonal polynomials","authors":"Edinson Fuentes, Luis E. Garza, Martha L. Saiz","doi":"10.1515/math-2024-0029","DOIUrl":null,"url":null,"abstract":"In this manuscript, we study some algebraic and differential properties of matrix orthogonal polynomials with respect to the Laguerre-Sobolev right sesquilinear form defined by <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0029_eq_001.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"> <m:msub> <m:mrow> <m:mrow> <m:mo>⟨</m:mo> <m:mrow> <m:mi>p</m:mi> <m:mo>,</m:mo> <m:mi>q</m:mi> </m:mrow> <m:mo>⟩</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mi mathvariant=\"bold\">S</m:mi> </m:mrow> </m:msub> <m:mo>≔</m:mo> <m:munderover> <m:mrow> <m:mrow> <m:mo>∫</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> <m:mrow> <m:mi>∞</m:mi> </m:mrow> </m:munderover> <m:msup> <m:mrow> <m:mi>p</m:mi> </m:mrow> <m:mrow> <m:mo>*</m:mo> </m:mrow> </m:msup> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:msubsup> <m:mrow> <m:mi mathvariant=\"bold\">W</m:mi> </m:mrow> <m:mrow> <m:mi mathvariant=\"bold\">L</m:mi> </m:mrow> <m:mrow> <m:mi mathvariant=\"bold\">A</m:mi> </m:mrow> </m:msubsup> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mi>q</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mi mathvariant=\"normal\">d</m:mi> <m:mi>x</m:mi> <m:mo>+</m:mo> <m:mi mathvariant=\"bold\">M</m:mi> <m:munderover> <m:mrow> <m:mrow> <m:mo>∫</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> <m:mrow> <m:mi>∞</m:mi> </m:mrow> </m:munderover> <m:msup> <m:mrow> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>p</m:mi> <m:mo accent=\"false\">′</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mo>*</m:mo> </m:mrow> </m:msup> <m:mi mathvariant=\"bold\">W</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mi>q</m:mi> <m:mo accent=\"false\">′</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mi mathvariant=\"normal\">d</m:mi> <m:mi>x</m:mi> <m:mo>,</m:mo> </m:math> <jats:tex-math>{\\langle p,q\\rangle }_{{\\bf{S}}}:= \\underset{0}{\\overset{\\infty }{\\int }}{p}^{* }\\left(x){{\\bf{W}}}_{{\\bf{L}}}^{{\\bf{A}}}\\left(x)q\\left(x){\\rm{d}}x+{\\bf{M}}\\underset{0}{\\overset{\\infty }{\\int }}{(p^{\\prime} \\left(x))}^{* }{\\bf{W}}\\left(x)q^{\\prime} \\left(x){\\rm{d}}x,</jats:tex-math> </jats:alternatives> </jats:disp-formula> where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0029_eq_002.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msubsup> <m:mrow> <m:mi mathvariant=\"bold\">W</m:mi> </m:mrow> <m:mrow> <m:mi mathvariant=\"bold\">L</m:mi> </m:mrow> <m:mrow> <m:mi mathvariant=\"bold\">A</m:mi> </m:mrow> </m:msubsup> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:msup> <m:mrow> <m:mi>e</m:mi> </m:mrow> <m:mrow> <m:mo>−</m:mo> <m:mi>λ</m:mi> <m:mi>x</m:mi> </m:mrow> </m:msup> <m:msup> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mi mathvariant=\"bold\">A</m:mi> </m:mrow> </m:msup> </m:math> <jats:tex-math>{{\\bf{W}}}_{{\\bf{L}}}^{{\\bf{A}}}\\left(x)={e}^{-\\lambda x}{x}^{{\\bf{A}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the Laguerre matrix weight, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0029_eq_003.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"bold\">W</m:mi> </m:math> <jats:tex-math>{\\bf{W}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is some matrix weight, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0029_eq_004.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>p</m:mi> </m:math> <jats:tex-math>p</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0029_eq_005.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>q</m:mi> </m:math> <jats:tex-math>q</jats:tex-math> </jats:alternatives> </jats:inline-formula> are the matrix polynomials, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0029_eq_006.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"bold\">M</m:mi> </m:math> <jats:tex-math>{\\bf{M}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0029_eq_007.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"bold\">A</m:mi> </m:math> <jats:tex-math>{\\bf{A}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> are the matrices such that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0029_eq_008.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"bold\">M</m:mi> </m:math> <jats:tex-math>{\\bf{M}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is non-singular and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0029_eq_009.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"bold\">A</m:mi> </m:math> <jats:tex-math>{\\bf{A}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> satisfies a spectral condition, and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0029_eq_010.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>λ</m:mi> </m:math> <jats:tex-math>\\lambda </jats:tex-math> </jats:alternatives> </jats:inline-formula> is a complex number with positive real part.","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":"6 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/math-2024-0029","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this manuscript, we study some algebraic and differential properties of matrix orthogonal polynomials with respect to the Laguerre-Sobolev right sesquilinear form defined by p , q S 0 p * ( x ) W L A ( x ) q ( x ) d x + M 0 ( p ( x ) ) * W ( x ) q ( x ) d x , {\langle p,q\rangle }_{{\bf{S}}}:= \underset{0}{\overset{\infty }{\int }}{p}^{* }\left(x){{\bf{W}}}_{{\bf{L}}}^{{\bf{A}}}\left(x)q\left(x){\rm{d}}x+{\bf{M}}\underset{0}{\overset{\infty }{\int }}{(p^{\prime} \left(x))}^{* }{\bf{W}}\left(x)q^{\prime} \left(x){\rm{d}}x, where W L A ( x ) = e λ x x A {{\bf{W}}}_{{\bf{L}}}^{{\bf{A}}}\left(x)={e}^{-\lambda x}{x}^{{\bf{A}}} is the Laguerre matrix weight, W {\bf{W}} is some matrix weight, p p and q q are the matrix polynomials, M {\bf{M}} and A {\bf{A}} are the matrices such that M {\bf{M}} is non-singular and A {\bf{A}} satisfies a spectral condition, and λ \lambda is a complex number with positive real part.
关于 Laguerre-Sobolev 矩阵正交多项式
在本手稿中,我们研究了矩阵正交多项式的一些代数和微分性质,这些矩阵正交多项式与由 ⟨ p , q ⟩ S ≔ ∫ 0 ∞ p * ( x ) W L A ( x ) q ( x ) d x + M ∫ 0 ∞ ( p ′ ( x ) ) 定义的 Laguerre-Sobolev 右倍线性形式有关。 * W ( x ) q ′ ( x ) d x , {\langle p,q\rangle }_{{\bf{S}}}:= \underset{0}{\overset{\infty }{\int }}{p}^{* }\left(x){{\bf{W}}}_{{\bf{L}}}^{{\bf{A}}}\left(x)q\left(x){\rm{d}}x+{\bf{M}}\underset{0}{\overset{\infty}{int }}{(p^{\prime} \left(x))}^{* }{\bf{W}}\left(x)q^{\prime} \left(x){\rm{d}}x、 其中 W L A ( x ) = e - λ x x A {{\bf{W}}}_{{\bf{L}}}^{\bf{A}}}\left(x)={e}^{-\lambda x}{x}^{{\bf{A}}} 是拉盖尔矩阵权重、 W {\bf{W}} 是某个矩阵权重,p p 和 q q 是矩阵多项式,M {\bf{M}} 和 A {\bf{A}} 是矩阵,使得 M {\bf{M}} 是非奇异矩阵,A {\bf{A}} 满足谱条件,λ \lambda 是实部为正的复数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Open Mathematics
Open Mathematics MATHEMATICS-
CiteScore
2.40
自引率
5.90%
发文量
67
审稿时长
16 weeks
期刊介绍: Open Mathematics - formerly Central European Journal of Mathematics Open Mathematics is a fully peer-reviewed, open access, electronic journal that publishes significant, original and relevant works in all areas of mathematics. The journal provides the readers with free, instant, and permanent access to all content worldwide; and the authors with extensive promotion of published articles, long-time preservation, language-correction services, no space constraints and immediate publication. Open Mathematics is listed in Thomson Reuters - Current Contents/Physical, Chemical and Earth Sciences. Our standard policy requires each paper to be reviewed by at least two Referees and the peer-review process is single-blind. Aims and Scope The journal aims at presenting high-impact and relevant research on topics across the full span of mathematics. Coverage includes:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信