Inverse problem for Dirac operators with a small delay

Nebojša Djurić, Biljana Vojvodić
{"title":"Inverse problem for Dirac operators with a small delay","authors":"Nebojša Djurić, Biljana Vojvodić","doi":"arxiv-2408.01229","DOIUrl":null,"url":null,"abstract":"This paper addresses inverse spectral problems associated with Dirac-type\noperators with a constant delay, specifically when this delay is less than\none-third of the interval length. Our research focuses on eigenvalue behavior\nand operator recovery from spectra. We find that two spectra alone are\ninsufficient to fully recover the potentials. Additionally, we consider the\nAmbarzumian-type inverse problem for Dirac-type operators with a delay. Our\nresults have significant implications for the study of inverse problems related\nto the differential operators with a constant delay and may inform future\nresearch directions in this field.","PeriodicalId":501373,"journal":{"name":"arXiv - MATH - Spectral Theory","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Spectral Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.01229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper addresses inverse spectral problems associated with Dirac-type operators with a constant delay, specifically when this delay is less than one-third of the interval length. Our research focuses on eigenvalue behavior and operator recovery from spectra. We find that two spectra alone are insufficient to fully recover the potentials. Additionally, we consider the Ambarzumian-type inverse problem for Dirac-type operators with a delay. Our results have significant implications for the study of inverse problems related to the differential operators with a constant delay and may inform future research directions in this field.
具有小延迟的狄拉克算子的逆问题
本文探讨了与具有恒定延迟的狄拉克型算子相关的逆谱问题,特别是当延迟小于区间长度的三分之一时。我们的研究重点是特征值行为和从光谱恢复算子。我们发现,仅靠两个光谱不足以完全恢复算子势。此外,我们还考虑了具有延迟的狄拉克型算子的安巴祖米型逆问题。我们的结果对研究与具有恒定延迟的微分算子相关的逆问题具有重要意义,并可能为这一领域的未来研究方向提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信