Restriction of Schrödinger eigenfunctions to submanifolds

Xiaoqi Huang, Xing Wang, Cheng Zhang
{"title":"Restriction of Schrödinger eigenfunctions to submanifolds","authors":"Xiaoqi Huang, Xing Wang, Cheng Zhang","doi":"arxiv-2408.01947","DOIUrl":null,"url":null,"abstract":"Burq-G\\'erard-Tzvetkov and Hu established $L^p$ estimates for the restriction\nof Laplace-Beltrami eigenfunctions to submanifolds. We investigate the\neigenfunctions of the Schr\\\"odinger operators with critically singular\npotentials, and estimate the $L^p$ norms and period integrals for their\nrestriction to submanifolds. Recently, Blair-Sire-Sogge obtained global $L^p$\nbounds for Schr\\\"odinger eigenfunctions by the resolvent method. Due to the\nSobolev trace inequalities, the resolvent method cannot work for submanifolds\nof all dimensions. We get around this difficulty and establish spectral\nprojection bounds by the wave kernel techniques and the bootstrap argument\ninvolving an induction on the dimensions of the submanifolds.","PeriodicalId":501373,"journal":{"name":"arXiv - MATH - Spectral Theory","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Spectral Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.01947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Burq-G\'erard-Tzvetkov and Hu established $L^p$ estimates for the restriction of Laplace-Beltrami eigenfunctions to submanifolds. We investigate the eigenfunctions of the Schr\"odinger operators with critically singular potentials, and estimate the $L^p$ norms and period integrals for their restriction to submanifolds. Recently, Blair-Sire-Sogge obtained global $L^p$ bounds for Schr\"odinger eigenfunctions by the resolvent method. Due to the Sobolev trace inequalities, the resolvent method cannot work for submanifolds of all dimensions. We get around this difficulty and establish spectral projection bounds by the wave kernel techniques and the bootstrap argument involving an induction on the dimensions of the submanifolds.
薛定谔特征函数对子曲面的限制
Burq-G\'erard-Tzvetkov和Hu建立了拉普拉斯-贝尔特拉米特征函数对子曲面的限制的$L^p$估计。我们研究了具有临界奇异势的薛定谔算子的特征函数,并估计了它们限制到子曲面的 $L^p$ 准则和周期积分。最近,Blair-Sire-Sogge 通过分解法得到了薛定谔特征函数的全局$L^p$边界。由于索波列夫痕量不等式的存在,Resolvent 方法无法适用于所有维度的子实体。我们绕过这一困难,利用波核技术和涉及子曼形维数归纳的引导论证建立了谱投影约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信