Abstract Left-Definite Theory: A Model Operator Approach, Examples, Fractional Sobolev Spaces, and Interpolation Theory

Christoph Fischbacher, Fritz Gesztesy, Paul Hagelstein, Lance Littlejohn
{"title":"Abstract Left-Definite Theory: A Model Operator Approach, Examples, Fractional Sobolev Spaces, and Interpolation Theory","authors":"Christoph Fischbacher, Fritz Gesztesy, Paul Hagelstein, Lance Littlejohn","doi":"arxiv-2408.01514","DOIUrl":null,"url":null,"abstract":"We use a model operator approach and the spectral theorem for self-adjoint\noperators in a Hilbert space to derive the basic results of abstract\nleft-definite theory in a straightforward manner. The theory is amply\nillustrated with a variety of concrete examples employing scales of Hilbert\nspaces, fractional Sobolev spaces, and domains of (strictly) positive\nfractional powers of operators, employing interpolation theory. In particular, we explicitly describe the domains of positive powers of the\nharmonic oscillator operator in $L^2(\\mathbb{R})$ $\\big($and hence that of the\nHermite operator in $L^2\\big(\\mathbb{R}; e^{-x^2}dx)\\big)\\big)$ in terms of\nfractional Sobolev spaces, certain commutation techniques, and positive powers\nof (the absolute value of) the operator of multiplication by the independent\nvariable in $L^2(\\mathbb{R})$.","PeriodicalId":501373,"journal":{"name":"arXiv - MATH - Spectral Theory","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Spectral Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.01514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We use a model operator approach and the spectral theorem for self-adjoint operators in a Hilbert space to derive the basic results of abstract left-definite theory in a straightforward manner. The theory is amply illustrated with a variety of concrete examples employing scales of Hilbert spaces, fractional Sobolev spaces, and domains of (strictly) positive fractional powers of operators, employing interpolation theory. In particular, we explicitly describe the domains of positive powers of the harmonic oscillator operator in $L^2(\mathbb{R})$ $\big($and hence that of the Hermite operator in $L^2\big(\mathbb{R}; e^{-x^2}dx)\big)\big)$ in terms of fractional Sobolev spaces, certain commutation techniques, and positive powers of (the absolute value of) the operator of multiplication by the independent variable in $L^2(\mathbb{R})$.
抽象左有限理论:模型算子方法、实例、分数索波列夫空间和插值理论
我们使用模型算子方法和希尔伯特空间中自相关算子的谱定理,以简单明了的方式推导出抽象左有限理论的基本结果。我们用各种具体的例子,包括希尔伯特空间的尺度、分数索博廖夫空间和算子的(严格)正分数幂域,运用插值理论,充分说明了这一理论。特别是,我们明确地描述了$L^2(\mathbb{R})$\big($中谐振子算子的正幂域,以及$L^2\big(\mathbb{R}.中赫米特算子的正幂域;e^{-x^2}dx)\big)\big)$ 中的赫米特算子的正幂次(绝对值)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信