The Steklov spectrum of convex polygonal domains I: spectral finiteness

Emily B. Dryden, Carolyn Gordon, Javier Moreno, Julie Rowlett, Carlos Villegas-Blas
{"title":"The Steklov spectrum of convex polygonal domains I: spectral finiteness","authors":"Emily B. Dryden, Carolyn Gordon, Javier Moreno, Julie Rowlett, Carlos Villegas-Blas","doi":"arxiv-2408.01529","DOIUrl":null,"url":null,"abstract":"We explore the Steklov eigenvalue problem on convex polygons, focusing mainly\non the inverse Steklov problem. Our primary finding reveals that, for almost\nall convex polygonal domains, there exist at most finitely many non-congruent\ndomains with the same Steklov spectrum. Moreover, we obtain explicit upper\nbounds for the maximum number of mutually Steklov isospectral non-congruent\npolygonal domains. Along the way, we obtain isoperimetric bounds for the\nSteklov eigenvalues of a convex polygon in terms of the minimal interior angle\nof the polygon.","PeriodicalId":501373,"journal":{"name":"arXiv - MATH - Spectral Theory","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Spectral Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.01529","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We explore the Steklov eigenvalue problem on convex polygons, focusing mainly on the inverse Steklov problem. Our primary finding reveals that, for almost all convex polygonal domains, there exist at most finitely many non-congruent domains with the same Steklov spectrum. Moreover, we obtain explicit upper bounds for the maximum number of mutually Steklov isospectral non-congruent polygonal domains. Along the way, we obtain isoperimetric bounds for the Steklov eigenvalues of a convex polygon in terms of the minimal interior angle of the polygon.
凸多边形域的斯特克洛夫谱 I:谱有限性
我们探讨了凸多边形上的斯特克洛夫特征值问题,主要侧重于反斯特克洛夫问题。我们的主要发现表明,对于几乎所有凸多边形域,最多存在有限多个具有相同斯特克洛夫谱的非共轭域。此外,我们还获得了最大数量的互为 Steklov 等谱非共轭多边形域的明确上限。同时,我们还根据多边形的最小内角,得到了凸多边形的斯泰克洛夫特征值的等周界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信