On the spectrum of Sturmian Hamiltonians of bounded type in a small coupling regime

Alexandro Luna
{"title":"On the spectrum of Sturmian Hamiltonians of bounded type in a small coupling regime","authors":"Alexandro Luna","doi":"arxiv-2408.01637","DOIUrl":null,"url":null,"abstract":"We prove that the Hausdorff dimension of the spectrum of a discrete\nSchr\\\"odinger operator with Sturmian potential of bounded type tends to one as\ncoupling tends to zero. The proof is based on the trace map formalism.","PeriodicalId":501373,"journal":{"name":"arXiv - MATH - Spectral Theory","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Spectral Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.01637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We prove that the Hausdorff dimension of the spectrum of a discrete Schr\"odinger operator with Sturmian potential of bounded type tends to one as coupling tends to zero. The proof is based on the trace map formalism.
论小耦合机制下有界类型的斯图尔米安哈密顿频谱
我们证明了一个离散薛定谔(Schr "oddinger)算子的谱的豪斯多夫维度(Hausdorff dimension),该算子具有有界类型的斯图尔绵势能(Sturmian potential),当耦合趋于零时,其谱的豪斯多夫维度趋于一。证明基于迹图形式主义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信