Spectral statistics of the Laplacian on random covers of a closed negatively curved surface

Julien Moy
{"title":"Spectral statistics of the Laplacian on random covers of a closed negatively curved surface","authors":"Julien Moy","doi":"arxiv-2408.02808","DOIUrl":null,"url":null,"abstract":"Let $(X,g)$ be a closed, connected surface, with variable negative curvature.\nWe consider the distribution of eigenvalues of the Laplacian on random covers\n$X_n\\to X$ of degree $n$. We focus on the ensemble variance of the smoothed\nnumber of eigenvalues of the square root of the positive Laplacian\n$\\sqrt{\\Delta}$ in windows $[\\lambda-\\frac 1L,\\lambda+\\frac 1L]$, over the set\nof $n$-sheeted covers of $X$. We first take the limit of large degree $n\\to\n+\\infty$, then we let the energy $\\lambda$ go to $+\\infty$ while the window\nsize $\\frac 1L$ goes to $0$. In this ad hoc limit, local energy averages of the\nvariance converge to an expression corresponding to the variance of the same\nstatistic when considering instead spectra of large random matrices of the\nGaussian Orthogonal Ensemble (GOE). By twisting the Laplacian with unitary\nrepresentations, we are able to observe different statistics, corresponding to\nthe Gaussian Unitary Ensemble (GUE) when time reversal symmetry is broken.\nThese results were shown by F. Naud for the model of random covers of a\nhyperbolic surface. For an individual cover $X_n\\to X$, we consider spectral fluctuations of the\ncounting function on $X_n$ around the ensemble average. In the large energy\nregime, for a typical cover $X_n\\to X$ of large degree, these fluctuations are\nshown to approach the GOE result, a phenomenon called ergodicity in Random\nMatrix Theory. An analogous result for random covers of hyperbolic surfaces was\nobtained by Y. Maoz.","PeriodicalId":501373,"journal":{"name":"arXiv - MATH - Spectral Theory","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Spectral Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.02808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $(X,g)$ be a closed, connected surface, with variable negative curvature. We consider the distribution of eigenvalues of the Laplacian on random covers $X_n\to X$ of degree $n$. We focus on the ensemble variance of the smoothed number of eigenvalues of the square root of the positive Laplacian $\sqrt{\Delta}$ in windows $[\lambda-\frac 1L,\lambda+\frac 1L]$, over the set of $n$-sheeted covers of $X$. We first take the limit of large degree $n\to +\infty$, then we let the energy $\lambda$ go to $+\infty$ while the window size $\frac 1L$ goes to $0$. In this ad hoc limit, local energy averages of the variance converge to an expression corresponding to the variance of the same statistic when considering instead spectra of large random matrices of the Gaussian Orthogonal Ensemble (GOE). By twisting the Laplacian with unitary representations, we are able to observe different statistics, corresponding to the Gaussian Unitary Ensemble (GUE) when time reversal symmetry is broken. These results were shown by F. Naud for the model of random covers of a hyperbolic surface. For an individual cover $X_n\to X$, we consider spectral fluctuations of the counting function on $X_n$ around the ensemble average. In the large energy regime, for a typical cover $X_n\to X$ of large degree, these fluctuations are shown to approach the GOE result, a phenomenon called ergodicity in Random Matrix Theory. An analogous result for random covers of hyperbolic surfaces was obtained by Y. Maoz.
封闭负弯曲表面随机盖上的拉普拉斯函数谱统计
让$(X,g)$是一个封闭的、连通的曲面,具有可变的负曲率。我们考虑的是拉普拉奇特征值在阶数为$n$的随机盖$X_n\to X$上的分布。我们关注的是在 $X$ 的 $n$ 片状覆盖集合上,在 $[\lambda-\frac 1L,\lambda+\frac 1L]$窗口中,正拉普拉斯方程$sqrt/{Delta}$的平方根特征值的平滑数的集合方差。我们首先取大阶数 $n\to+\infty$ 的极限,然后让能量 $lambda$ 变为 $+\infty$,而窗口大小 $frac 1L$ 变为 $0$。在这种特别限制下,当考虑高斯正交集合(GOE)的大随机矩阵谱时,方差的局部能量平均值会收敛到与同类统计方差相对应的表达式。当时间反转对称性被打破时,通过对具有单元表示的拉普拉斯进行扭曲,我们能够观察到与高斯单元集合(GUE)相对应的不同统计量。对于单个覆盖$X_n\to X$,我们考虑了围绕集合平均值的$X_n$上计数函数的谱波动。在大能级条件下,对于一个典型的大能级盖$X_n\to X$,这些波动接近于GOE结果,这种现象在随机矩阵理论中称为遍历性(ergodicity)。毛兹(Y. Maoz)也得到了双曲面随机盖的类似结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信