Compensating slice emittance growth in high brightness photoinjectors using a sacrificial charge

IF 1.5 3区 物理与天体物理 Q3 PHYSICS, NUCLEAR
W. H. Li, A. C. Bartnik, A. Fukasawa, M. Kaemingk, G. Lawler, N. Majernik, J. B. Rosenzweig, J. M. Maxson
{"title":"Compensating slice emittance growth in high brightness photoinjectors using a sacrificial charge","authors":"W. H. Li, A. C. Bartnik, A. Fukasawa, M. Kaemingk, G. Lawler, N. Majernik, J. B. Rosenzweig, J. M. Maxson","doi":"10.1103/physrevaccelbeams.27.084401","DOIUrl":null,"url":null,"abstract":"Achieving maximum electron beam brightness in photoinjectors requires detailed control of the 3D bunch shape and precise tuning of the beam focusing. Even in state-of-the-art designs, slice emittance growth due to nonlinear space charge forces and partial nonlaminarity often remains non-negligible. In this work, we introduce a new means to linearize the transverse slice phase space: a sacrificial portion of the bunch’s own charge distribution, formed into a wavebroken shock front by highly nonlinear space charge forces within the gun, whose downstream purpose is to dynamically linearize the desired bunch core. We show that linearization of an appropriately prepared bunch can be achieved via strongly nonlaminar focusing of the sacrificial shock front, while the inner core focuses laminarly. This leads to a natural spatial separation of the two distributions: a dense core surrounded by a diffuse halo of sacrificial charge that can be collimated. Multiobjective genetic algorithm optimizations of the ultracompact x-ray free electron laser injector employ this concept, and we interpret it with an analytic model that agrees well with the simulations. In simulation, we demonstrate a final bunch charge of 100 pC, peak current <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>∼</mo><mn>30</mn></math> A, and a sacrificial charge of 150 pC (250 pC total emitted from cathode) with normalized emittance growth of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mo>&lt;</mo><mn>20</mn><mtext> </mtext><mtext> </mtext><mi>nm</mi><mtext> </mtext><mi>rad</mi></mrow></math> due to space charge. This implies a maximum achievable brightness approximately an order of magnitude greater than existing free electron laser injector designs.","PeriodicalId":54297,"journal":{"name":"Physical Review Accelerators and Beams","volume":"18 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Accelerators and Beams","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevaccelbeams.27.084401","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Achieving maximum electron beam brightness in photoinjectors requires detailed control of the 3D bunch shape and precise tuning of the beam focusing. Even in state-of-the-art designs, slice emittance growth due to nonlinear space charge forces and partial nonlaminarity often remains non-negligible. In this work, we introduce a new means to linearize the transverse slice phase space: a sacrificial portion of the bunch’s own charge distribution, formed into a wavebroken shock front by highly nonlinear space charge forces within the gun, whose downstream purpose is to dynamically linearize the desired bunch core. We show that linearization of an appropriately prepared bunch can be achieved via strongly nonlaminar focusing of the sacrificial shock front, while the inner core focuses laminarly. This leads to a natural spatial separation of the two distributions: a dense core surrounded by a diffuse halo of sacrificial charge that can be collimated. Multiobjective genetic algorithm optimizations of the ultracompact x-ray free electron laser injector employ this concept, and we interpret it with an analytic model that agrees well with the simulations. In simulation, we demonstrate a final bunch charge of 100 pC, peak current 30 A, and a sacrificial charge of 150 pC (250 pC total emitted from cathode) with normalized emittance growth of <20nmrad due to space charge. This implies a maximum achievable brightness approximately an order of magnitude greater than existing free electron laser injector designs.

Abstract Image

利用牺牲电荷补偿高亮度光电射极中的切片发射率增长
要在光电喷射器中实现最大电子束亮度,需要对三维束形进行详细控制,并对光束聚焦进行精确调整。即使在最先进的设计中,由于非线性空间电荷力和部分非层状性而导致的切片幅射增长往往也是不可忽略的。在这项工作中,我们引入了一种使横向切片相空间线性化的新方法:束自身电荷分布的牺牲部分,通过枪内高度非线性的空间电荷力形成波破冲击前沿,其下游目的是动态地使所需的束核线性化。我们的研究表明,通过牺牲冲击前沿的强烈非层状聚焦,可以实现适当制备的束的线性化,而内部核心则是层状聚焦。这导致了两种分布在空间上的自然分离:密集的核心被可准直的牺牲电荷扩散晕所包围。超小型 X 射线自由电子激光注入器的多目标遗传算法优化采用了这一概念,我们用一个与模拟结果非常吻合的分析模型来解释这一概念。在仿真中,我们证明最终束电荷为 100 pC,峰值电流为 30 A,牺牲电荷为 150 pC(阴极发射的总电荷为 250 pC),空间电荷导致的归一化幅射增长为 20 nm rad。这意味着可实现的最大亮度比现有的自由电子激光注入器设计高出大约一个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review Accelerators and Beams
Physical Review Accelerators and Beams Physics and Astronomy-Surfaces and Interfaces
CiteScore
3.90
自引率
23.50%
发文量
158
审稿时长
23 weeks
期刊介绍: Physical Review Special Topics - Accelerators and Beams (PRST-AB) is a peer-reviewed, purely electronic journal, distributed without charge to readers and funded by sponsors from national and international laboratories and other partners. The articles are published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. It covers the full range of accelerator science and technology; subsystem and component technologies; beam dynamics; accelerator applications; and design, operation, and improvement of accelerators used in science and industry. This includes accelerators for high-energy and nuclear physics, synchrotron-radiation production, spallation neutron sources, medical therapy, and intense-beam applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信